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Parton showers and logarithmic accuracy

Scale Q

µNP

Parton showers play a key role in our
interpretation of collider data, evolving states
generated in hard scatterings down to the

low scale of hadronisation.

We expect logs between disparate scales, e.g

αn
s ln2n Q/µNP

αn
s ln2n−1 Q/µNP

...
Would like to re-sum these logs

→ Logarithmic accuracy:
Well defined

Systematically improvable
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Hard Process
Fixed order

Parton Shower

Hadronisation



Logarithmic accuracy

For event shapes:

Σ(L) =
(

1 +
αs

2π
C1︸ ︷︷ ︸

NNLL

)
exp

[
− 1
αs

g1(αs L)︸ ︷︷ ︸
LL

− g2(αs L)︸ ︷︷ ︸
NLL

−αsg3(αsL)︸ ︷︷ ︸
NNLL

...

]

� Broadly speaking NLL implies control of terms αn
s Ln

� with NNLL implying control of terms αn
s Ln−1

� We expect that NNLL will be needed for percent level accuracy at LHC
energies
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� 1988 - First dipole shower (LL)
Gustafson Pettersson

� ... Elements of NLL
� 2020 - First NLL shower * Dasgupta et.

al. 2020

� Now ... Towards NNLL parton showers
* Full NLL in 2021 arxiv:2111.01161, Hamilton et. al.



Do we need NNLL accurate showers?

� The widely used LL showers are
extremely successful tools, but have
room for improvement.

� Particularly in very differential
measurements, we can find
variations of around 25% between
LL showers.

� A slice in the Lund plane is likely
indicative of such variations in jet
substructure observables.

� Such variations may translate into
machine learning algorithms learning
un-physical features from Monte
Carlo.
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What do we need for NNLL?

Start with an NLL shower

� The shower should reproduce
the correct emission rate at
NLO for soft-collinear emissions
(included through the CMW
scheme)

αCMW
s = αs

(
1 + αsKCMW

2π

)
� The shower must produce the

correct matrix element for soft
and/or collinear emissions which
are far apart on the Lund plane

η

ln kt/Q

1

arxiv:1805.09327, Dasgupta, Dreyer, Hamilton, Monni, Salam. arxiv:2002.11114, + Soyez
J.Helliwell (U.O.O) NNLL Parton Showers BOOST 2024 6 / 30



What do we need for NNLL?

Start with an NLL shower

� The shower should reproduce
the correct emission rate at
NLO for soft-collinear emissions
(included through the CMW
scheme)

αCMW
s = αs

(
1 + αsKCMW

2π

)
� The shower must produce the

correct matrix element for soft
and/or collinear emissions which
are far apart on the Lund plane

η

ln kt/Q

1

arxiv:1805.09327, Dasgupta, Dreyer, Hamilton, Monni, Salam. arxiv:2002.11114, + Soyez
J.Helliwell (U.O.O) NNLL Parton Showers BOOST 2024 6 / 30

Adding an emission far from others in
the Lund plane must not modify the

kinematics of previous emissions.



What is needed for NNLL?

NNDL accuracy tests
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2301.09645: Hamilton, Karlberg, Salam, Scyboz,
Verheyen

η

ln kt/Q

1

Σ(L) =
(

1 +
αs

2π
C1︸ ︷︷ ︸

NNLL

)
exp

[
− 1
αs

g1(αs L)︸ ︷︷ ︸
LL

− g2(αs L)︸ ︷︷ ︸
NLL

−αsg3(αsL)︸ ︷︷ ︸
NNLL

...

]
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NLO Matching
without breaking NLL



What is needed for NNLL?

Correct matrix element (ME) for pairs of soft and/or collinear emissions
that are close on the Lund plane.

� The matrix element should be
correct for emissions from (but
not close to) that pair.

� Double soft treated in 2307.11142:
Ferrario Ravasio, Hamilton, Karlberg,
Salam, Scyboz, Soyez

� Progress towards triple collinear
later this talk

η

ln kt/Q

1
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Double softTriple collinear



What is needed for NNLL?

Virtual corrections, included through the inclusive emission rate

� Inclusive emission rate at NNLO
in the soft and collinear region.

� Inclusive emission rate at NLO
for soft or collinear emissions.
(Soft region treated in 2307.11142:
Ferrario Ravasio, Hamilton, Karlberg,
Salam, Scyboz, Soyez )

η

ln kt/Q

1
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What do we mean by inclusive emission rate?

We can write the showers emission probability as

dPi =
αeff

s
π

dvi

vi
dzi

dφi

2π
P exp

[
−
∫ vi−1

vi

αeff
s
π

dv
v

dz dφ
2π

P
]

αeff
s = αs(vi)

[
1 +

αs(vi)

2π
K (1)(ki) +

αs(vi)

2π
K (2)

]

� The K (n) encode the probability of producing an emission, inclusive over the
virtual corrections and subsequent branchings that are correlated with the
presence of that emission.
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Relation to analytical resummation

In an analytical resummation, for the gluon branching channel, this corresponds to
integrating over the gluon decay products keeping the kinematics of the parent
fixed e.g

→

Combining with the relevant virtual correction, and removing strongly ordered
contributions, one finds

P(z)K (1)(ki) =
2CF

1 − z
KCMW + B(2)(z)
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Relation to analytical resummation

The shower does not preserve the parent kinematics when it adds an emission,
which we need to account for when calculating the inclusive emission probability
e.g

→

→ We make a scheme change corresponding to integrating the reals over the
shower phase space, using the shower’s kinematic map.

P(z)K (1)(ki) =
2CF

1 − z
KCMW + δK (1)(y) + B(2)(z) + δB(2)(z)
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Relation to analytical resummation

ΔK1 B
2 (z)B 2(

z)y

ln kt

V(k)
= v

kt = vhc ≡ v
1

1 + βobs

M(k)

A general and intuitive way to understand this is that adding an emission close in
phase space to a previous emission causes the first emission to drift in phase

space, which δK (1)(y) and δB(2)(z) account for.

arxiv:2406.02661, M. Van Beekveld, M. Dasgupta, B. El-Menoufi, S. Ferrario Ravasio, K.
Hamilton, JH, A. Karlberg, P. Monni, G. Salam, L. Scyboz, A. Soto-Ontoso, G. Soyez
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NNLL accuracy tests
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� For the showers which are not NNLL accurate, we see that coefficient of the
spurious NNLL terms is O(2 − 3), suggesting a sizeable phenomenological
impact.

arxiv:2406.02661, M. Van Beekveld, M. Dasgupta, B. El-Menoufi, S. Ferrario Ravasio, K.
Hamilton, JH, A. Karlberg, P. Monni, G. Salam, L. Scyboz, A. Soto-Ontoso, G. Soyez
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� For the showers which are not NNLL accurate, we see that coefficient of the
spurious NNLL terms is O(2 − 3), suggesting a sizeable phenomenological
impact.

arxiv:2406.02661, M. Van Beekveld, M. Dasgupta, B. El-Menoufi, S. Ferrario Ravasio, K.
Hamilton, JH, A. Karlberg, P. Monni, G. Salam, L. Scyboz, A. Soto-Ontoso, G. Soyez
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This is the first time a parton shower
has achieved NNLL accuracy for event

shapes!



Comparison to LEP data
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� Inclusion of NNLL potentially
resolves the issue of needing
an anomalously large value of
αs(mZ) to achieve good
agreement with LEP data.
(αs(mZ) = 0.137 in Pythia’s
Monash 13 tune *
arxiv:1404.5630, Skands, Carrazza,
Rojo )

� Some caution needed as no
3-jet NLO matching, which is
known to be relevant away
from the 2-jet region.

� A comprehensive study of
shower uncertainties is still to
be done.

*This should be taken as an average αeff
s not an αMS

s
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Exploratory Tuning
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� We start from the Monash 13 tune for the non-perturbative parameters
� IRC safe observables (e.g see left plot) are largely insensitive to tuning of

non-perturbative parameters as expected.
� Charged multiplicity (see right) and other IRC unsafe observables depend

strongly on tuning
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Ongoing developments

� The next step towards general NNLL accuracy is the consistent inclusion of
triple collinear corrections

� This will bring NSL accuracy for fragmentation functions, small radius jet
spectra and many jet substructure observables

� We have recently developed a non-singlet collinear shower algorithm
demonstrating the inclusion of the Abelian triple collinear splitting functions
and corresponding virtual corrections.arxiv:2408.xxxxx,van Beekveld, Dasgupta, El-Menoufi,
JH, Monni, Salam
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NSL collinear parton shower - Real emissions

� Having accepted a first emission, we use the following shower matrix element

P = J (Φi,Φp)
p1→3(Φi,Φp)

Pqq(zp)
Θ(vgiqi < vgpqi )

� Applying this for successive emissions, the shower will correctly reproduces
the matrix elements for pairs of emissions, strongly ordered with respect to
other pairs.

� The ordering condition (step function) must be symmetric between the two
emissions to properly account for the 1/2! symmetry factor in the matrix
element.

� Always taking the previously generated emission as the parent (p) would not
be IRC safe. We effectively take the closest emission in the Lund plane to be
the parent.
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NSL collinear parton shower - Inclusive emission probability

We can deduce the inclusive emission probability by considering the process
e+e− → qq̄, but the final result (in the infra-red) is process independent.

αs

2π
K(zg) =

︷ ︸︸ ︷
Vqq̄g

Bqq̄g
+

∫ ṽg

0

dΦqq̄ij

dΦqq̄g

Bqq̄g1g2

Bqq̄g
−
∫ vg

0

dΦqq̄g′

dΦqq̄

Bqq̄g′

Bqq̄
− Vqq̄

Bqq̄︸ ︷︷ ︸

� This can be formulated directly in terms of the process independent one-loop 1 → 2
and tree level 1 → 2 and 1 → 3 splitting functions.

� It is crucial that this is evaluated using the shower kinematic map, so that the
shower Sudakov will cancel against the real terms down to the cutoff scale.

� This definition is consistent with the drift picture discussed earlier

*A similar equation appears in the context of embedding NLO 3-jet with NLO 2-jet in a shower
1303.4974, 1611.00013, 2108.07133; Li, Skands et.al .
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We are inclusive over the virtual corrections
and a subsequent emission

and subtract the components of the virtual and
subsequent emission probability that factorise from the

emission of the first gluon
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We are inclusive over the virtual corrections
and a subsequent emission

and subtract the components of the virtual and
subsequent emission probability that factorise from the

emission of the first gluon



NSL collinear parton shower - Tests of logarithmic accuracy

� Non-singlet partonic fragmentation function evolution

� Comparison between shower and HOPPET DGLAP evolution code

� Zero in the αs → 0 limit signals NSL agreement
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NSL collinear parton shower - Tests of logarithmic accuracy

� Non-singlet small radius jet spectrum

� same as fragmentation function at SL but distinct at NSL
� NSL prediction derived from arxiv:2402.05170, Van Beekveld, Dasgupta, El-Menoufi, JH,

Karlberg, Monni and implemented in HOPPET
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Summary

� As of version 0.2 PanGlobal showers have NNLL accuracy for final state event
shapes, NNDL accuracy for sub-jet multiplicities and NSL accuracy for soft
dominated non-global observables (e.g the energy flow into a rapidity slice).
Available from https://gitlab.com/panscales/panscales-0.X

� The phenomenological impact of NNLL corrections can be significant and
potentially resolves the tension that showers typically need an unphysically
large αs to achieve good agreement with data.

� Work towards triple collinear corrections is ongoing. Once completed the
PanScale showers will arguably have the main elements of general NNLL
accuracy for final state showers.
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Backup slides
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Parent finding algorithm

� The correct triple collinear
configuration is the quark,
emission 1 and the trial
emission, because the soft wide
angle emission factorises from
the production of the trial
emission.

� If we took just the previous
emission as the parent, we
would be taking emission 2,
which would not be IRC safe as
2 can be arbitrarily soft.

η

ln kt/Q

1

2

Trial

1

1

2

Trial emission
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Parent finding algorithm

� We must also take care not to
cover the same phase space
twice.

� We only trial emissions from a
particular parent once at any
given scale

ln kt
Q

η

1
2
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Tests of Logarithmic accuracy

To test NSL accuracy of the shower, we construct

1
αs

(
D(PS)

NS (z, vmin, vmax)

D(NSL)
NS (z, vmin, vmax)

− 1

)
.

and take the αs → 0 limit.

For NNLL event shapes, the relevant quantity is

λ2

α2
s

(
lnΣ(PS)(λ)

lnΣ(NNLL)(λ)
− 1
)

.

with λ = αsL
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Tests of Logarithmic accuracy - Fragmentation function

� We start the shower at scale vmax with a quark with momentum fraction
z = 1.

� Run the shower down to vmin and measure the energy distribution of quarks.

λ = αs(vmax) ln(vmin/vmax)

D(NSL)
NS (z, vmin, vmax) = C(vmin)⊗ exp

[∫ v2
max

v2
min

dv2

v2 P̂(v)

]
⊗ C−1(vmax)

The coeficient function accounts for the scheme change between MS
fragmentation function, using dimensional regularisation, and the shower scheme,

using a cuttoff regularisation scheme.
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Tests of Logarithmic accuracy - small R jets

� Start the shower at sufficiently high scale with a quark with momentum
fraction z = 1, so that, for any z ∈ [zc, 1 − zc], the angular scale R0 can be
generated by the shower.

� Run the shower down to a low scale, so that for any z ∈ [zc, 1 − zc], the
angular scale R can be generated by the shower.

� Veto emissions with angle larger than R0, so as to mimic starting with a jet
of radius R0.

� Cluster jets with radius R, and study the energy spectrum of jets containing
the quark.
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Tests of Logarithmic accuracy - small R jets

D(NSL)
R (z,ER,ER0) =

C (R)(ER)⊗ exp

[
2
∫ ER0

ER

dµ
µ

P̂(R)(µ,ER)

]
⊗ [C (R)(ER0)]

−1 ,

� As we don’t implement matching in the non-single collinear shower, the hard
matching coefficient is replaced by [C (R)(ER0)]

−1 which accounts for
starting with a jet of radius R0.
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Small R jet evolution

The small R anomalous dimension can be expressed as

P̂ik (z, µ,E R) =
αs(µ

2)

2π

(
P̂(0)

ik (z) + αs(µ
2)

2π
P̂(1), AP

ik (z)− αs(E2R2)

2π
δP̂(1)

ik

)

so that:

dDjet
k (z, µ,E R)

d lnµ2 =
∑

i

∫ 1

z

dξ
ξ

P̂ik

(
z
ξ
, µ,E R

)
Djet

i (ξ, µ,E R) .

� This can be derived using an NSL generating functional approach
arxiv:2307.15734, M. van Beekveld, M. Dasgupta, B. El-Menoufi, JH, P. Monni

� The coupling scale in the highlighted term emerges as a consequence of the
change in energy of the quark over the course of the evolution
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