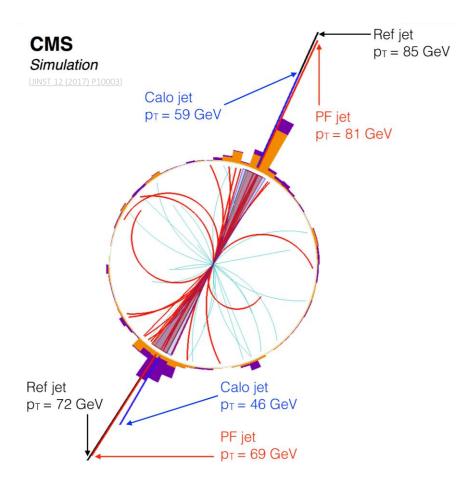


Jet substructure measurements with CMS

Kaustuv Datta (ETH Zürich)


on behalf of the CMS Collaboration

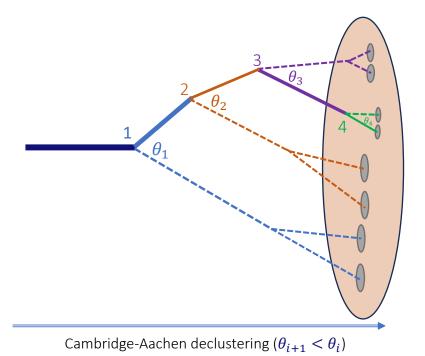
July 30, BOOST 2024

Outline

- 1. Introduction
- 2. Jet substructure measurements at CMS:
 - a. Measurement of the primary Lund jet plane density in proton-proton collisions at $\sqrt{s} = 13$ TeV; JHEP 05 (2024) 116
 - b. Measurement of energy correlators inside jets and determination of the strong coupling $\alpha_S(m_Z)$; arXiv:2402.13864
 - c. Girth and groomed radius of jets recoiling against isolated photons in lead-lead and proton-proton collisions at $\sqrt{s_{NN}} = 5.02$ TeV; arXiv:2405.02737 (see Bharadwaj's talk)
 - d. Unfolding the jet axis decorrelation in pp and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with CMS; <u>CERN-CMS-NOTE-2024-004</u> (see Molly's <u>talk</u>)
 - e. Jet fragmentation function and groomed substructure of bottom quark jets in proton-proton collisions at $\sqrt{s} = 5.02$ TeV; CMS-PAS-HIN-24-005 (see Lida's <u>talk</u>)
 - f. Exploring small-angle emissions in D-tagged jets in proton-proton collisions at $\sqrt{s} = 5.02$ TeV; CMS-PAS-HIN-24-007 (see Jelena's talk)
- 3. Summary

Introduction

(some) recent CMS measurements


Deference /a	Final state	lots flavours m (Co)()	Observables
Reference, \sqrt{s}	Final State	Jets flavours, p_T (GeV)	Observables
<u>1808.0734</u> 13 TeV pp	tī	q/g-jets (AK4), p_T >30 g-jets (AK4), p_T >30 b-jets (AK4), p_T >30	Jet substructure and softdrop observables
<u>1809.08602</u> 5.02 TeV pp/PbPb	jets	q/g-jets (AK3), p_T >30	Jet shapes
<u>1911.038</u> 13 TeV pp	$t\overline{t}$	top-jets (XC12), p_T >400	XCone-groomed jet mass
<u>2004.00602</u> 5.02 TeV pp/PbPb	jets	q/g-jets (AK4), p _T >120	Jet charge
<u>2101.0472</u> 5.02 TeV pp/PbPb	dijets	q/g-jets (AK4), p _T >50	Jet shapes
<u>2109.0334</u> 13 TeV pp	dijets Z+jets	q/g-jets (AK4), p_T >30 q-jets (AK4), p_T >30	Generalised angularities
<u>2210.08547</u> 5.02 TeV pp/PbPb	jets	q/g-jets, b-jets (AK4), p _T >120	Jet shapes
<u>2211.01456</u> 13 TeV pp	tt	top-jets (XC12), p_T >400	XCone-groomed jet mass
<u>2312.16343</u> 13 TeV pp	dijets	q/g-jets (AK4, AK8), p _T >700	Lund plane
<u>2312.17103</u> 13 TeV pp	Jets	q/g-jets (AK4), p_T >550	2D angular correlations
2402.13864 13 TeV pp	dijets	q/g-jets (AK4), 97 <p<sub>T<1784</p<sub>	Energy correlators
<u>2405.02737</u> 5.02 TeV pp/PbPb	γ+jet	q/g-jets (AK2), p_T >40	Groomed jet radius, girth

- Jet substructure measurements a critical part of experimental programmes at LHC collaborations and beyond
 - \rightarrow experimental precision sufficient to compare unfolded measurements
 - to state-of-the-art in analytic calculations in perturbative QCD
 - → isolate modelling of different perturbative and non-perturbative contributions in a well-defined way
 - ightarrow probe stages of jet formation, scaling properties of QCD
 - → provide numerous handles for tuning Monte Carlo event generators, parton shower and hadronization models, custom underlying event tunes
 - → reduction in uncertainties on other measurements/searches/ML taggers relying on accurate modelling of jet substructure

Measurement of the primary Lund jet plane density in proton-proton collisions at $\sqrt{s} = 13$ TeV

JHEP 05 (2024) 116

138 fb⁻¹ (13 TeV) CMS 1.2 AK8 jets $p_{T}^{\text{jet}} > 700 \text{ GeV}, |y_{\text{iet}}| < 1.7$ 10 0.8 Emission density ρ (I ^{10]} k₁ [GeV] GeV 0.6 0.4 0.2 1는 1 1.5 2 2.5 3 0 0.5 3.5 4 4.5 5 $\ln(R/\Delta R)$ 10^{-2} 10^{-1} ΔR

Building the primary Lund jet plane

F. Dreyer, G. Salam, G. Soyez, JHEP 12 (2018) 064

- Angle-ordered reclustering of particles in a jet using Cambridge-Aachen (C/A) algorithm
- Start with the full jet, work backwards through the C/A clustering tree

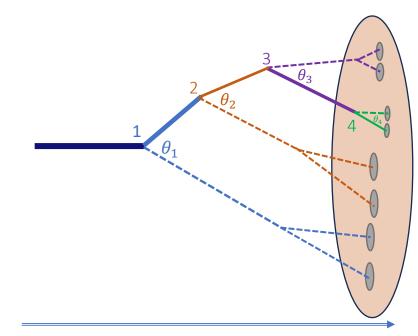
 \rightarrow decluster object at step *i*, store kinematic coordinates characterizing the declustering $\{k_T^{(i)}, \Delta R^{(i)}, ...\}$

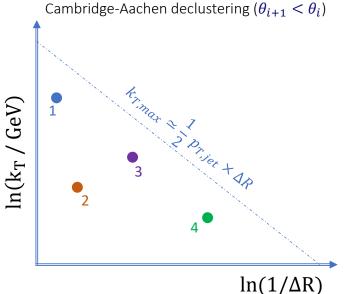
$$\Delta R = \sqrt{\left(y_{softer} - y_{harder}\right)^{2} + \left(\phi_{softer} - \phi_{harder}\right)^{2}} , \qquad k_{T} = p_{T,softer} \Delta R$$

 \rightarrow repeat along the harder of two branches until only 1 particle left on hard branch

Building the primary Lund jet plane

F. Dreyer, G. Salam, G. Soyez, JHEP 12 (2018) 064


- Angle-ordered reclustering of particles in a jet using Cambridge-Aachen (C/A) algorithm
- Start with the full jet, work backwards through the C/A clustering tree


 \rightarrow decluster object at step *i*, store kinematic coordinates characterizing the declustering $\{k_T^{(i)}, \Delta R^{(i)}, ...\}$

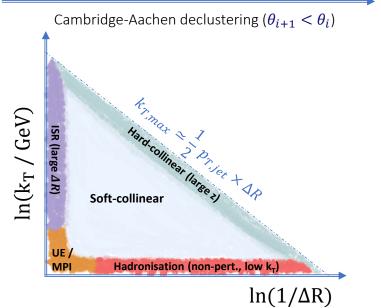
$$\Delta R = \sqrt{(y_{softer} - y_{harder})^2 + (\phi_{softer} - \phi_{harder})^2}$$
, $k_T = p_{T,softer} \Delta R$

ightarrow repeat along the harder of two branches until only 1 particle left on hard branch

- Ordered list of tuples of kinematic variables fills the primary Lund plane from left to right, (from larger to smaller splitting angles)
- See <u>Cristian's talk</u> on isolating a gluon-enriched phase space using the secondary LJP!
- Measurements by ATLAS Phys. Rev. Lett. 124, 222002 (2020) and ALICE ALICE-PUBLIC-2021-002

Building the primary Lund jet plane

F. Dreyer, G. Salam, G. Soyez, JHEP 12 (2018) 064


- Angle-ordered reclustering of particles in a jet using Cambridge-Aachen (C/A) algorithm
- Start with the full jet, work backwards through the C/A clustering tree

 \rightarrow decluster object at step *i*, store kinematic coordinates characterizing the declustering $\{k_T^{(i)}, \Delta R^{(i)}, ...\}$

$$\Delta R = \sqrt{\left(y_{softer} - y_{harder}\right)^{2} + \left(\phi_{softer} - \phi_{harder}\right)^{2}}, \qquad k_{T} = p_{T,softer} \Delta R$$

 \rightarrow repeat along the harder of two branches until only 1 particle left on hard branch

- Different QCD mechanisms naturally localized to specific regions of the plane \rightarrow test calculations explicitly for different regimes in slices of $k_{\rm T}$ and ΔR
 - → study specific aspects of mismodeling in MC event generators and parton shower/hadronization models and UE tunes

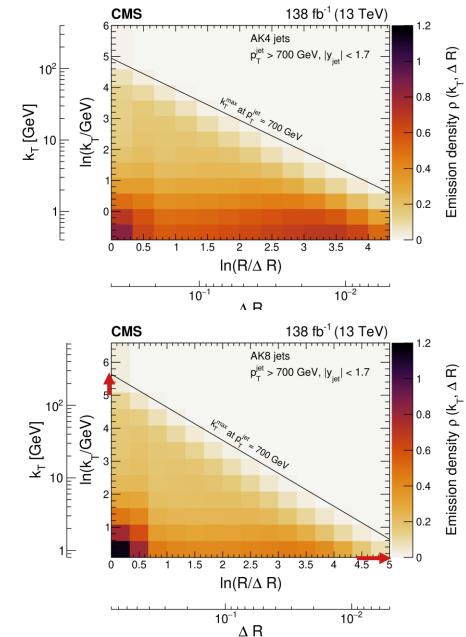
LJP: CMS measurement in Run 2

JHEP 05 (2024) 116

• Inclusive jet selection, with central, high p_T jets:

 $\rightarrow p_{\rm T} > 700$ GeV, $|{\rm y}| < 1.7$

 \rightarrow anti-k_T jets with R = 0.4 and 0.8 range of the measurement:


 $\sim 0.4(1) < k_{\rm T} < \sim 300(700)$ GeV, $0.005 < \Delta R < 0.4(0.8)$

(larger PS for hard &

wide-angle emissions)

- \rightarrow pileup (PU) mitigation using charged-hadron subtraction (CHS)
- \rightarrow negligible background contributions from non-QCD processes,
- \rightarrow only charged constituents/PF candidates:
 - improved angular & momentum resolution
 - PU contributions better controlled
- First measurements in large-radius jets; mitigates clustering effects in large swathes of the plane
- <u>HEPData</u> entry available for unfoldings

LJP: CMS measurement in Run 2 NB: 1-D slices are at the **detector level**, and LJP density after unfolding to the particle level

- Data

2.5

3

2

 ΔR

1.5

 10^{-1}

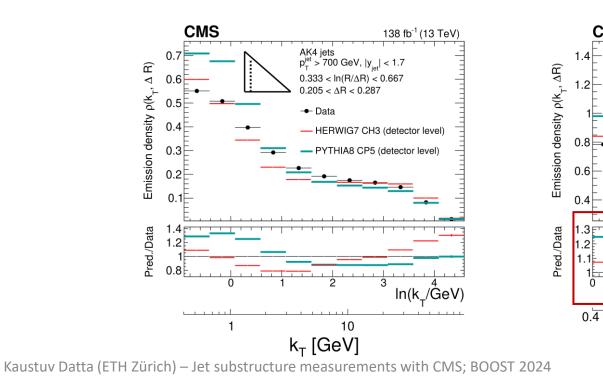
3.5

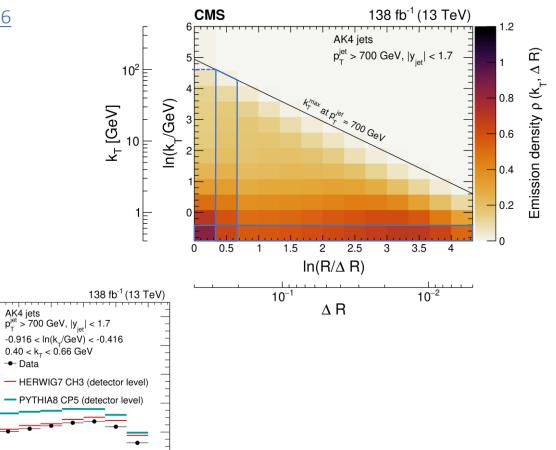
10⁻²

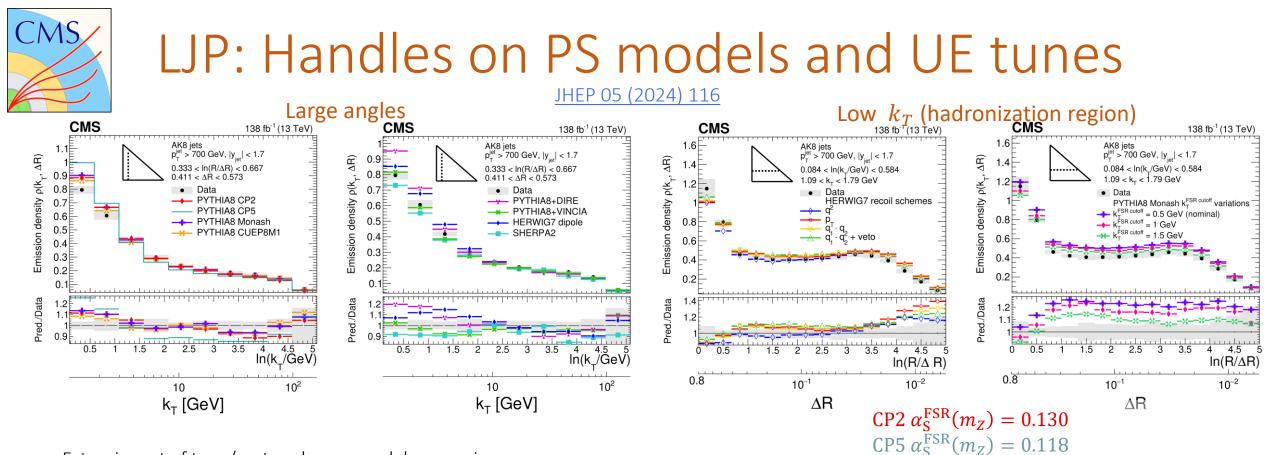
4

 $\ln(R/\Delta R)$

JHEP 05 (2024) 116


CMS


.3F


0.5

- Measurements are unfolded to particle level ٠
 - → PYTHIA8 CP5 and HERWIG7 CH3 generally envelope
 - data at detector level except in low k_{T} slice
 - \rightarrow migration matrices and other corrections to detector

level derived in nominal MC (PYTHIA8 w. CP5 tune),

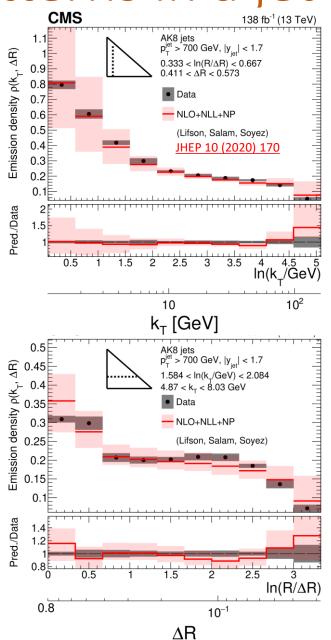
- Extensive set of tune/parton shower model comparisons
 - \rightarrow PYTHIA8 tunes: CP5, CP2, Monash, CUEP8M1
 - \rightarrow dipole shower models: VINCIA, DIRE, HERWIG7 dipole, SHERPA
 - \rightarrow angle-ordered Herwig7.2 recoil schemes: q^2 , p_T , $q_1 \cdot q_2$, $q_1 \cdot q_2$ +veto
 - \rightarrow variations of k_T^{FSR} cutoff in Monash tune: 0.5, 1, 1.5 GeV
- Differences, all MC, $\sim 10-20\%$ vs. bulk of the distribution in unfolded data

• Higher values of $\alpha_{\rm S}^{\rm FSR}(m_Z)$ and $k_T^{\rm FSR}$ describe substructure better

Monash $\alpha_{\rm S}^{\rm FSR}(m_Z) = 0.1365$

CUEP8M1 $\alpha_{\rm S}^{\rm FSR}(m_Z) = 0.1365$

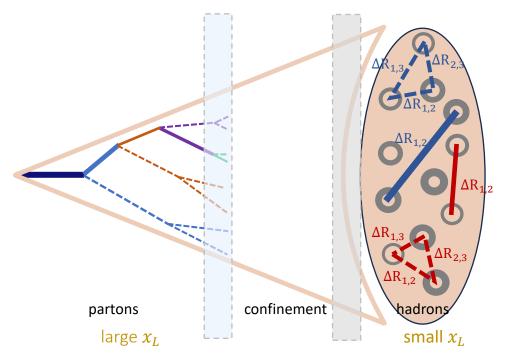
Angle-ordered showers in HERWIG7 more compatible with data vs.
 dipole shower across bulk of LJP; (q²) q₁ · q₂+ veto scheme better in (non-)perturbative region,



LJP: Constraining emission patterns in a jet

JHEP 05 (2024) 116

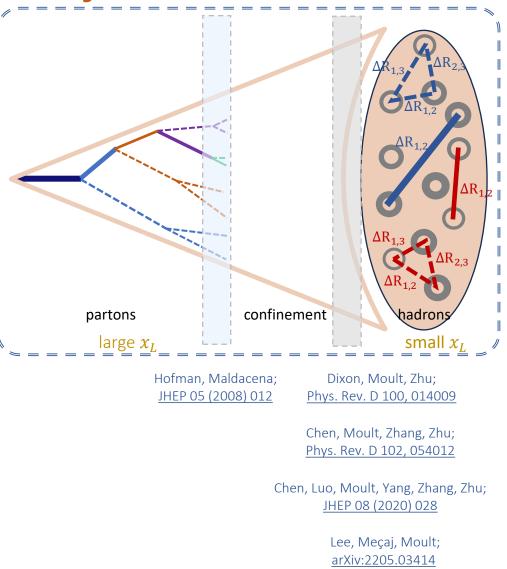
- Comparison to parton level pQCD predictions in measurement phase space
 - \rightarrow NLL accuracy, matched to NLO, with NP corrections
 - ightarrow
 ho scaled by avg. charged fraction (0.62)
 - ightarrow bin-by-bin correction to hadron level with MC
 - ightarrow theory uncertainties: from pQCD calculation and NP corrections
 - → resummation of non-global logs \leftrightarrow increased density at large ΔR effect of non-perturbative corrections \leftrightarrow at low k_T (<5 GeV)


Analytical calculations of substructure consistent with unfolded data; precision measurement ↔ our understanding of radiation in jets!

Measurement of energy correlators inside jets and determination $\alpha_S(m_Z)$

arXiv:2402.13864

Energy correlators in jets


- Unravel dynamics of jet formation, probe scaling behaviour of QCD
 - \rightarrow jet substructure \leftrightarrow study of correlation functions of energy flow operators in the collinear limit (plane of detector cells effectively at infinity)

$$\epsilon(\vec{n}) = \int_0^\infty dt \lim_{r \to \infty} r^2 n^i T_{0i}(t, r\vec{n})$$

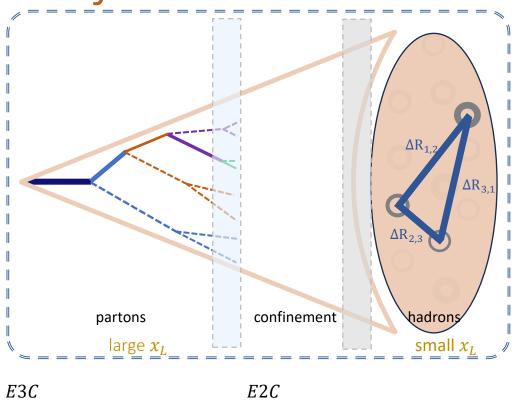
 $\rightarrow \langle \psi | \epsilon(\hat{n}_1) \dots \epsilon(\hat{n}_N) | \psi \rangle$, perturbatively calculable at higher orders

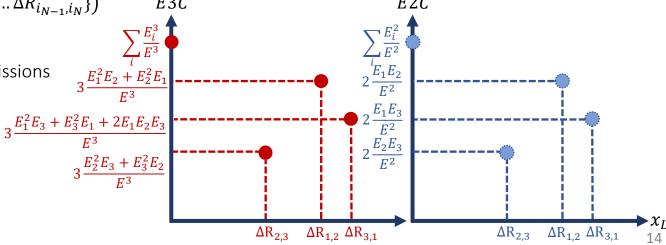
 \rightarrow n-point energy correlators, projected onto axis of (largest) angular distance x_L : energy weight

$$EnC = \frac{d\sigma^{[n]}}{dx_L} = \sum_{n} \sum_{1 \le i_1 \dots i_N \le n} \int d\sigma \frac{\prod_{a=1}^N E_{i_a}}{E^N} \delta(x_L - \max\{\Delta R_{i_1, i_2} \dots \Delta R_{i_{N-1}, i_N}\})$$

Energy correlators in jets

- Unravel dynamics of jet formation, probe scaling behaviour of QCD
 - \rightarrow jet substructure \leftrightarrow study of correlation functions of energy flow operators in the collinear limit (plane of detector cells effectively at infinity)


$$\epsilon(\vec{n}) = \int_0^\infty dt \lim_{r \to \infty} r^2 n^i T_{0i}(t, r\vec{n})$$

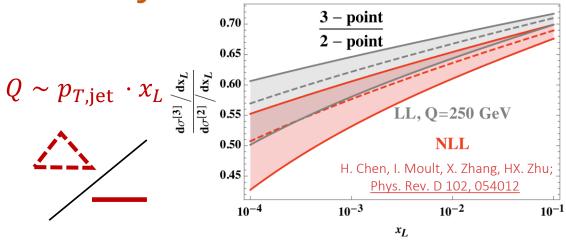

 $\rightarrow \langle \psi | \epsilon(\hat{n}_1) \dots \epsilon(\hat{n}_N) | \psi \rangle$, perturbatively calculable at higher orders

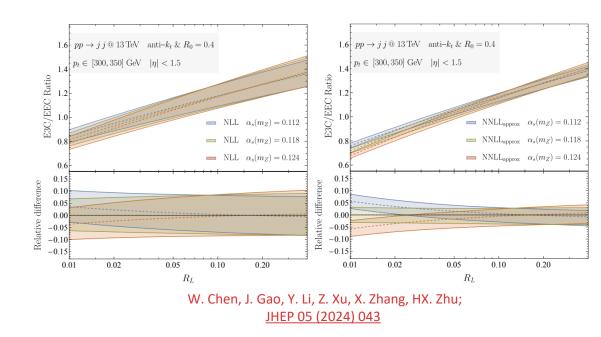
 \rightarrow n-point energy correlators, projected onto axis of (largest) angular distance x_L : energy weight

$$EnC = \frac{d\sigma^{[n]}}{dx_{L}} = \sum_{n} \sum_{1 \le i_{1} \dots i_{N} \le n} \int d\sigma \frac{\prod_{a=1}^{N} E_{i_{a}}}{E^{N}} \delta(x_{L} - \max\{\Delta R_{i_{1}, i_{2}} \dots \Delta R_{i_{N-1}, i_{N}}\})$$

- Multi-entry distributions for correlations between pairs/triplets of emissions
- Amenable to a novel extraction of the strong coupling

Energy correlators in jets

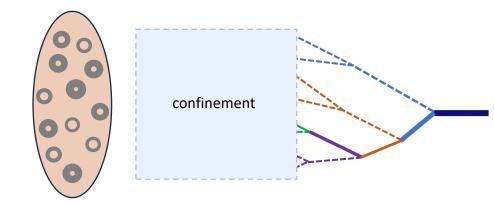

- Substructure measurements of α_S complicated by degeneracies between α_S and q/g fractions in jets (emission probabilities $\propto \alpha_S C_i$)
- Linear dependence on strong coupling at leading log:

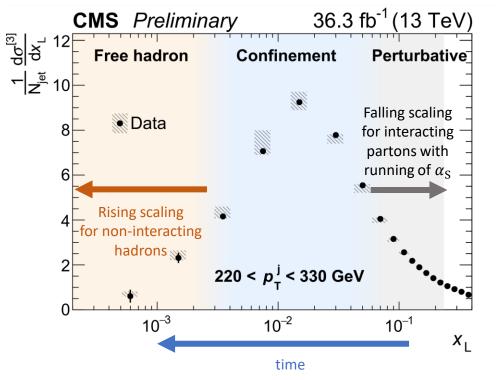

E2C, E3C ~ $c_0 + c_1 \alpha_S(Q) \ln(x_L) + O(\alpha_S^2) + (...),$

 \rightarrow different $c_i{'\rm s}$ for E2C and E3C, dependent on color factors C_i and q/g fractions

$$\frac{\text{E3C}}{\text{E2C}} = \frac{d\sigma^{[3,2]}}{dx_L} \propto \alpha_{\text{S}}(Q) \ln(x_L) + O(\alpha_{\text{S}}^2),$$

- → ratio mitigates dependence on q/g fraction, robust to detector effects, cancellation of PDF uncertainties, highlights dependence on $\alpha_{\rm S}(Q)$
- Scale uncertainties still large at NLL due to perturbative corrections, with effect of corrections greatly reduced at NNLL accuracy

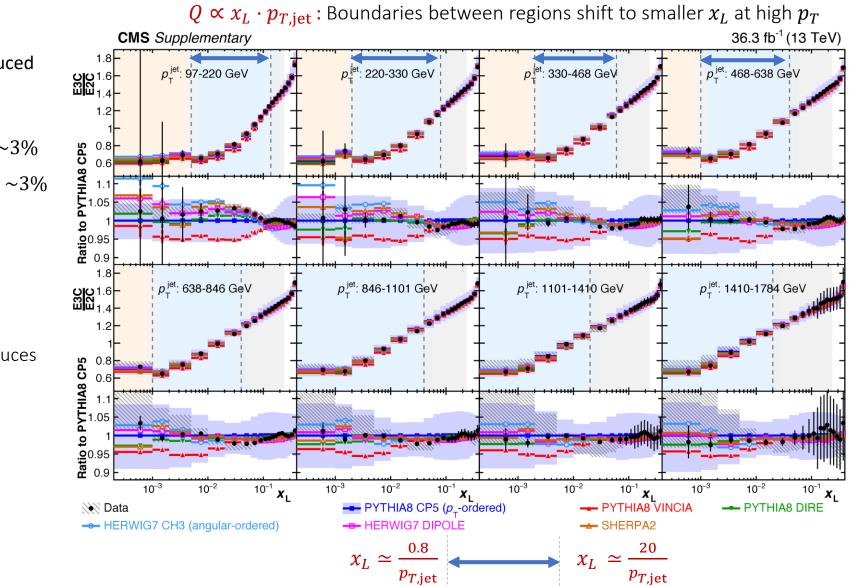

ENC: CMS measurement in Run 2


arXiv:2402.13864

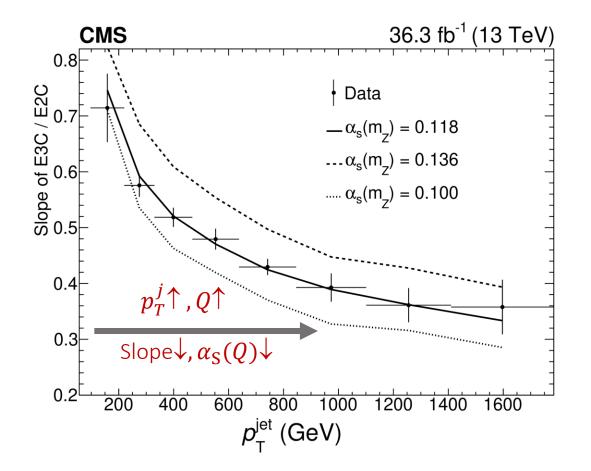
• Inclusive jet selection requiring at least 2 jets:

 \rightarrow 97 < $p_{\rm T} <$ 1784 GeV (8 regions), $|\eta| <$ 2.1, $|\Delta \phi \; (j_1, j_2)| >$ 2,

- \rightarrow anti-k_T jets with R = 0.4 ($Q \sim p_{T,jet} x_L: 5 80 \text{ GeV}$)
- \rightarrow negligible background contributions from non-QCD physics processes
- \rightarrow charged-hadron subtraction (CHS)
- ightarrow neutral and charged particles with $p_T > 1~{
 m GeV}$
- \rightarrow measurement in 2016 data (36.3 fb⁻¹), enough events for precision, low PU
- First measurement of 3-point correlator, and extraction of strong coupling using E3C/E2C ratio
- Slope measurements of ratio vs. $\ln(x_L)$ sensitive to α_S
 - \rightarrow study in slices of p_T to probe running of the coupling with energy scale



E3C/E2C: Unfolded measurements


arXiv:2402.13864

- Uncertainties and disagreements with data reduced in ratio E3C/E2C vs. x_L
 - $\rightarrow {\sim}10\%$ data/MC disagreement reduced to ${\sim}3\%$
 - \rightarrow experimental systematics ~8% reduced to ~3%
- Leading contributions to uncertainties:
 - ightarrow shower and model uncertainties
 - ightarrow neutral hadron and photon energy scale
- Slope of distributions in perturbative region reduces at larger values of p_T

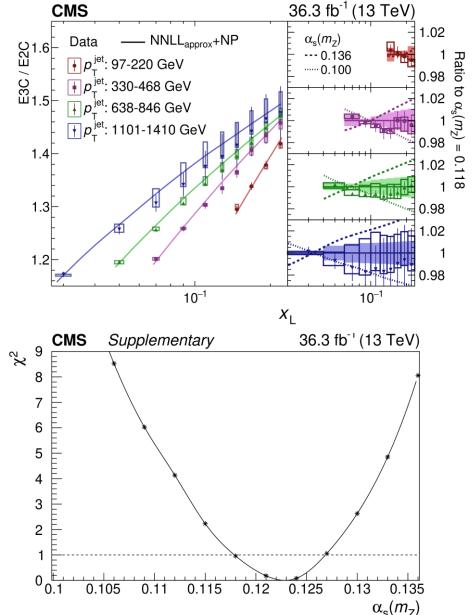
- Slopes of ratios in perturbative region reduces at higher p_T
- Fit $\Delta(E3C/E2C)/\Delta \ln x_L$ in a p_T region, and plot as a function of p_T (x-errors widths of p_T regions)
- Direct observation of asymptotic freedom at large energy scales!
- Comparisons to median values (in x_L) of three different theoretical predictions in perturbative region with variations of $\alpha_{
 m S}(m_Z)$

E3C/E2C: Precision extraction of $\alpha_{\rm S}$

arXiv:2402.13864

- Direct extraction of coupling from E3C/E2C vs. x_L (pert. regime, $x_L < 0.234$)
- Extraction using comparisons with theoretical predictions at NLO+NNLL approx for variations of $lpha_{
 m S}(m_Z)$

 \rightarrow minimize χ^2 between measurement and prediction using total covariance


- ightarrow nuisance parameter for unknown per- p_T bin theory normalization in
- \rightarrow nuisance parameters simultaneously varied,

PS renormalization scale unc. replaced by those for NNLL_{approx} predictions

 $\alpha_S(m_Z) = 0.1229^{+0.0040(\text{stat.}) + 0.0030(\text{th.}) + 0.0023(\text{exp.})}_{-0.0012(\text{stat.}) - 0.0033(\text{th.}) - 0.0036(\text{exp.})}$

Uncertainties ~ 4%: most precise extraction of α_s leveraging jet substructure Leading systematics: QCD scale for NLO+NNLL_{approx} prediction, neutral hadron and photon energy scale

 \Rightarrow expect reduction of uncertainties when using charged particle only

Summary

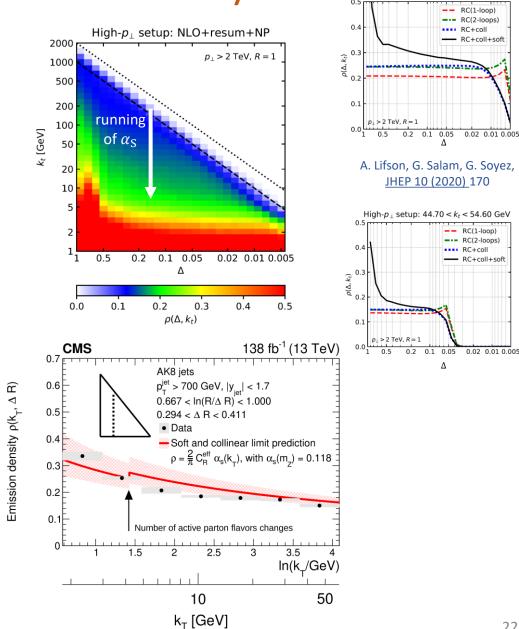
- Precision measurements of per-jet, multi-entry substructure observables:
 - \rightarrow sensitivity to fundamental QCD mechanisms over a large range of energy scales \rightarrow comparisons to perturbative, higher-order QCD calculations for jet substructure
- Factorisation of effects of QCD phenomena for phase space of emissions in a jet with single observable: using iterative declustering, extensive set of handles to constrain parton showers and analytic predictions
- Direct sensitivity to time evolution of shower, scaling behaviour of QCD, with objects grounded in field-theory: observation of confinement, asymptotic freedom and extraction of $\alpha_S(m_Z)$ from multi-particle correlations
- MC model uncertainties dominant in jet substructure measurements:
 - → provide complementary handles for benchmarking and constraining event generators, parton shower and hadronization models in well factorized measurements

BACKUP SLIDES

Primary Lund jet plane density

- Jet-averaged density (ρ) of 1 \rightarrow 2 splittings in the Lund plane ٠
 - \rightarrow calculable in perturbative QCD, where at leading order,

in soft and collinear limit, density scales with coupling,


$$\rho(\Delta R, k_{\rm T}) = \frac{1}{N_{\rm jets}} \frac{d^2 N_{\rm emissions}}{d \ln(k_T / \text{GeV}) d \ln(R/\Delta R)} \approx \frac{2}{\pi} C_{\rm i} \alpha_{\rm S}(k_T),$$

 $C_{\rm i}$: Casimir for quarks ($C_{\rm F} = 4/3$) and gluons ($C_{\rm A} = 3$)

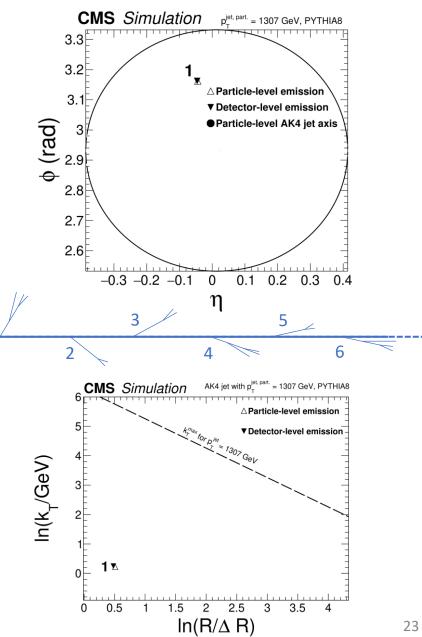
$$\alpha_{\rm S} \propto \frac{1}{\ln\left(\frac{k_{\rm T}}{\Lambda_{QCD}}\right)} \Rightarrow \sim \text{uniform } \rho \text{ at high } k_{\rm T}, \ \rho^{\uparrow} \text{ at low } k_{\rm T} \text{ as } \alpha_{\rm S} \gg 1$$

Broad features of unfolded LJP density described well in soft and collinear limit, ٠

 \rightarrow simplified assumptions: 1-loop β function with $\alpha_{\rm S}(m_Z) = 0.118$,

 \rightarrow effective color factor C_R = 0.59 C_F + 0.41 C_A \approx 2 (from MC q/g fractions)

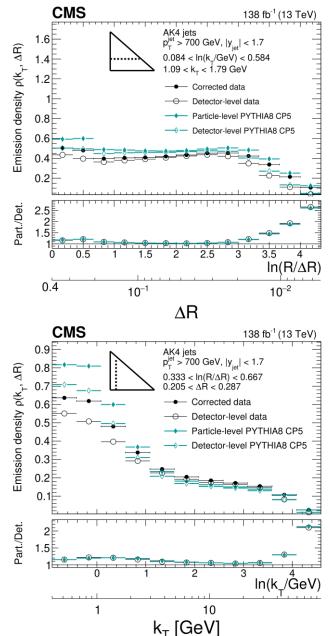
Kaustuv Datta (ETH Zürich) – Jet substructure measurements with CMS; BOOST 2024


High- p_{\perp} setup: 4.95 < k_t < 6.05 GeV

LJP: Unfolding and corrections

JHEP 05 (2024) 116

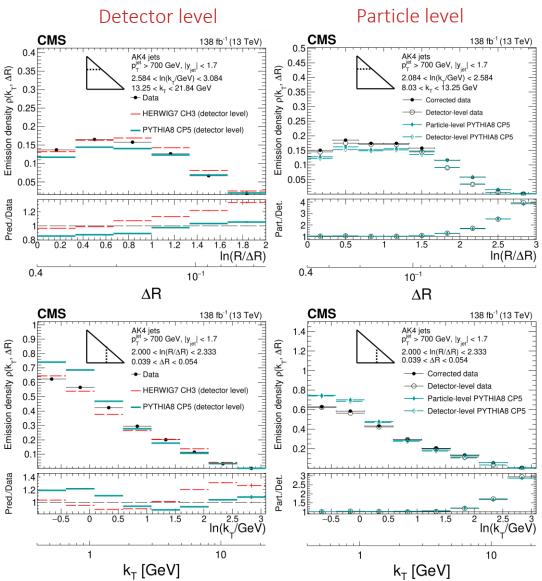
- Migration matrix for unfolding with geometric matching of detectorand truth-level jets and matching of emissions
 - \rightarrow match detector- and particle-level splittings in PYTHIA8 CP5;
 - choose closest in $\eta \phi$, $\forall \Delta R(\triangle, \mathbf{\nabla}) < 0.1$ for multiple matches
 - → background (bin-by-bin) subtraction of unmatched detector-level emissions estimated in MC (purity corrections)



LJP: Unfolding and corrections

JHEP 05 (2024) 116

- Migration matrix for unfolding with geometric matching of detectorand truth-level jets and matching of emissions
 - \rightarrow match detector- and particle-level splittings in PYTHIA8 CP5:
 - choose closest in $\eta \phi$, $\forall \Delta R(\triangle, igvee) < 0.1$ for multiple matches
 - → background (bin-by-bin) subtraction of unmatched detector-level emissions estimated in MC (purity corrections)
- Primary LJP density unfolded multidimensionally $(p_{T,jet}, k_T, \Delta R)$
 - ightarrow Multi-entry distribution, bin-to-bin statistical correlations: 5 10%
 - \rightarrow regularized D'Agostini unfolding: minimise χ^2 between input and forward-folded unfolded distribution: 12(8) iterations for R=0.4(0.8)
 - \rightarrow correction to $N_{\rm jets}$ for migrations between detector-/generator-level anti-k_T jet $p_{\rm T}$,
 - \rightarrow efficiency corrections (bin-by-bin) for unmatched hadron-level emissions in MC

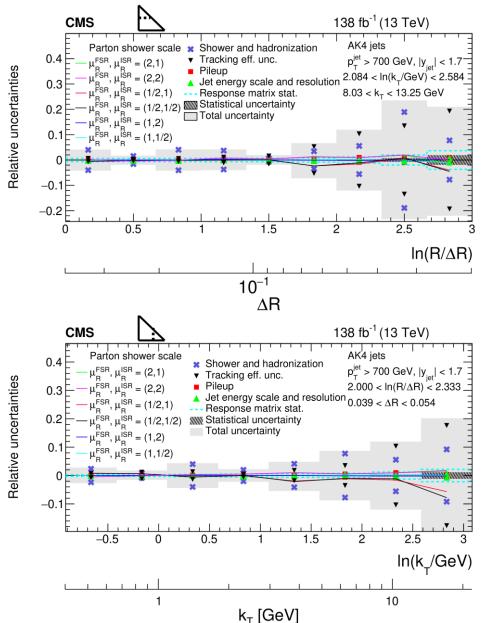

LJP: Unfolding and corrections

JHEP 05 (2024) 116

- Migration matrix for unfolding geometric matching of detector- and truth-level jets, and the matching of emissions
 - \rightarrow match detector- and particle-level descriptions of splittings in nominal MC

(PYTHIA8 CP5): choose closest in $\eta - \phi$, $\forall \Delta R(\triangle, \nabla) < 0.1$

- → background (bin-by-bin) subtraction of unmatched detector-level emissions estimated in MC (purity corrections)
- Primary LJP measurements **unfolded multidimensionally** in $(p_{T,jet}, k_T, \Delta R)$
 - ightarrow bin-to-bin stat. correlations: 5 10%
 - → regularized D'Agostini unfolding: minimise χ^2 between input and forward-folded distribution: 12(8) iterations for R=0.4(0.8)
 - ightarrow correction to $N_{
 m jets}$ for migrations between det.-/gen.-level anti-k_T jet $p_{
 m T}$
 - \rightarrow efficiency corrections (bin-by-bin) for unmatched hadron-level emissions in MC


LJP: Unfolding uncertainties

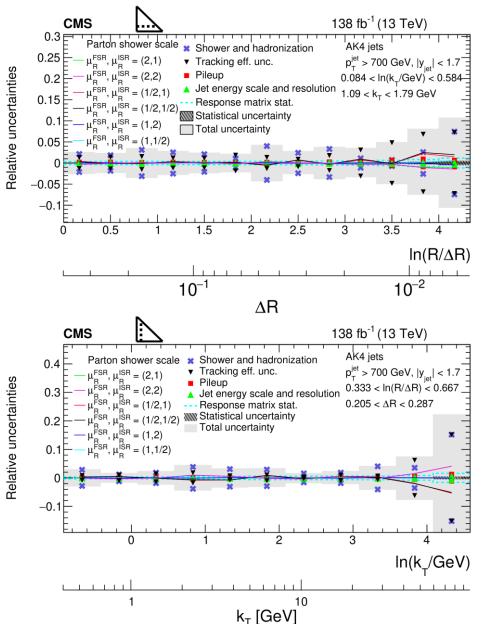
JHEP 05 (2024) 116

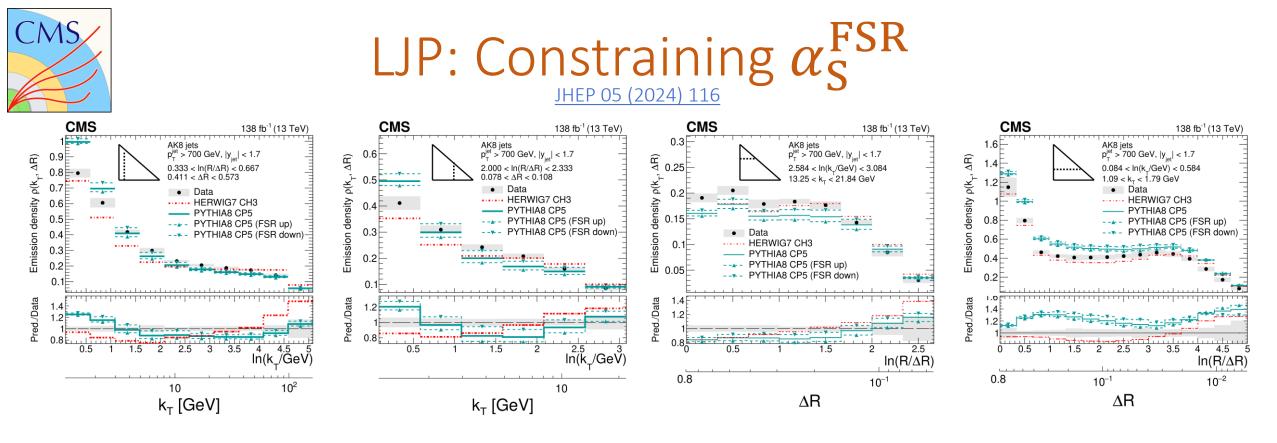
- Leading contributions
 - → parton shower + hadronization model uncertainty (dominant in bulk): decorrelated MC prior and response matrix stat. contributions in regularized unf. swap in HERWIG7 CH3 predictions for the prior/matrix from PYTHIA8 CP5; 2–7% contribution in bulk, ~20% at kinematic edge of LJP
 - \rightarrow tracking efficiency uncertainty (dominant at high k_T):

1-2% contribution in bulk, 15–25% at kinematic edge of LJP/in pert. region; includes contributions from losing subjets to cluster merging at $\Delta R \sim 0.05$ and (at low k_T , ΔR) $p_T > 1$ GeV requirement for PF cands.

- Sub-percent contributions
 - \rightarrow parton shower scale
 - \rightarrow finite statistics of the response matrix
 - \rightarrow (global) jet energy scale and resolution
 - \rightarrow pileup modeling

26

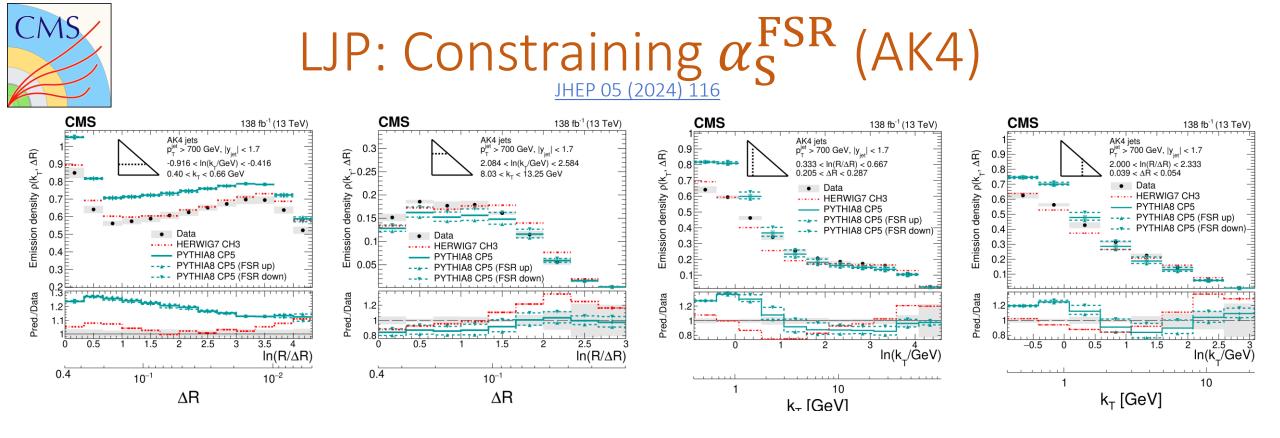

LJP: Unfolding uncertainties


JHEP 05 (2024) 116

- Leading contributions
 - → parton shower + hadronization model uncertainty (dominant in bulk): decorrelated MC prior and response matrix stat. contributions in regularized unf. swap in HERWIG7 CH3 predictions for the prior/matrix from PYTHIA8 CP5; 2–7% contribution in bulk, ~20% at kinematic edge of LJP
 - \rightarrow tracking efficiency uncertainty (dominant at high k_T):

1-2% contribution in bulk, 15–25% at kinematic edge of LJP/in pert. region; includes contributions from losing subjets to cluster merging at $\Delta R \sim 0.05$ and (at low k_T , ΔR) $p_T > 1$ GeV requirement for PF cands

- Sub-percent contributions
 - \rightarrow parton shower scale
 - \rightarrow finite statistics of the response matrix
 - \rightarrow (global) jet energy scale and resolution
 - \rightarrow pileup modeling


- Comparison of PYTHIA8 CP5 and HERWIG7 CH3 to data:
 - → differences: PYTHIA8 CP5 15-20%, HERWIG7 CH3 5-10%
 neither describe data well in every region of the LJP
 → shapes of distributions similar for AK8 and AK4 jets

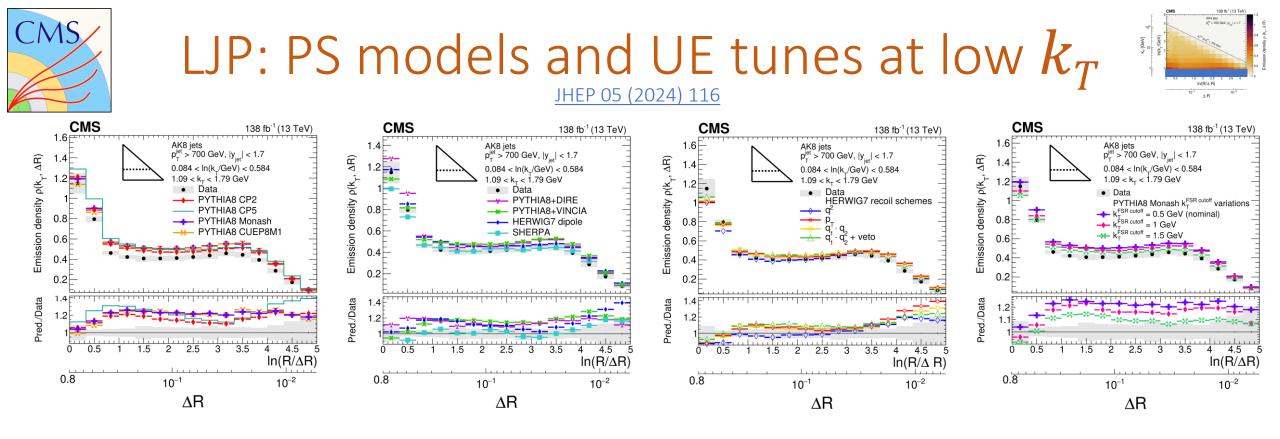
• LJP density linearly dependent on $\alpha_{\rm S}^{\rm FSR}(m_Z)$:

 \rightarrow sensitive to choice of renormalization scale

→ ~10% band in perturbative region, shrinks at low $k_{\rm T}$ higher $\alpha_{\rm S}^{\rm FSR}(m_Z)$ (FSR down) preferred at higher $k_{\rm T}$

Missing NLO corrections in QCD branchings more relevant at high $\ensuremath{p_{\rm T}}$ where the shower evolves for longer

• Comparison of PYTHIA8 CP5 and HERWIG7 CH3 to data:


→ differences in bulk: PYTHIA8 CP5 15–20%, HERWIG7 CH3 5–10%
 neither describe data well in every region of the LJP
 → shapes of distributions similar for AK4 and AK8 jets

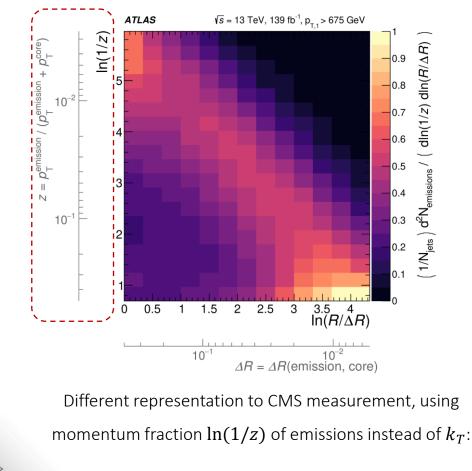
• LJP density linearly dependent on $\alpha_{\rm S}^{\rm FSR}(m_Z)$:

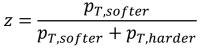
 \rightarrow sensitive to choice of renormalization scale

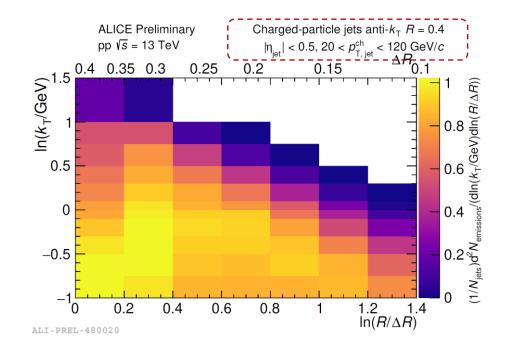
→ ~10% band in perturbative region, shrinks at low $k_{\rm T}$ higher $\alpha_{\rm S}^{\rm FSR}(m_Z)$ (FSR down)

Missing NLO corrections in QCD branchings more relevant at high p_T where the shower evolves for longer

- PYTHIA consistently overshoots data at low k_T irrespective of showering variations, renormalization scale choices (see backups)
- Generally, larger k_T^{FSR} to terminate FSR evolution more compatible with data across MCs (e.g., HERWIG7 and SHERPA $k_T^{\text{FSR}} = 1 \text{ GeV}$)


ln(1/z)


UE MP


> hardcollinea

> > $\ln(R/\Delta R)$

LJP: ATLAS & ALICE measurements

Different range of measurement, $20 < p_{T,jet} < 120$ GeV; probing mostly the wide-angle region, using low- k_T splittings in small radius (R=0.4) jets,

EnCs: Unfolding and corrections 220 CMS Supplementary 36.3 fb⁻¹ (13 TeV)

CERN-EP-2024-010

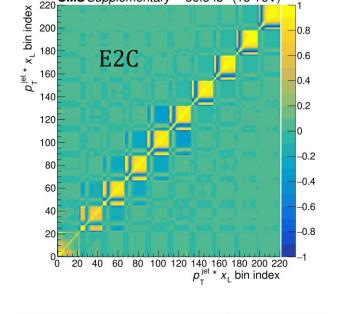
Migration matrix for unfolding requires geometric matching of detector- and generator-٠

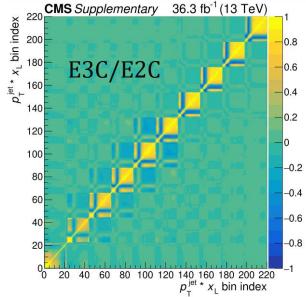
level jets ($\Delta R < 0.2$) and (PF) particles

 \rightarrow uniquely matched at detector- and truth-level descriptions in nominal MC

(PYTHIA8 CP5); mutually closest in plane of $\eta - \phi$, $\forall \Delta R(\triangle, \nabla) < 0.05$

- \rightarrow jet matching efficiency: > 99%
- → purity correction (bin-by-bin fake subtraction) for unmatched MC detector-level particles

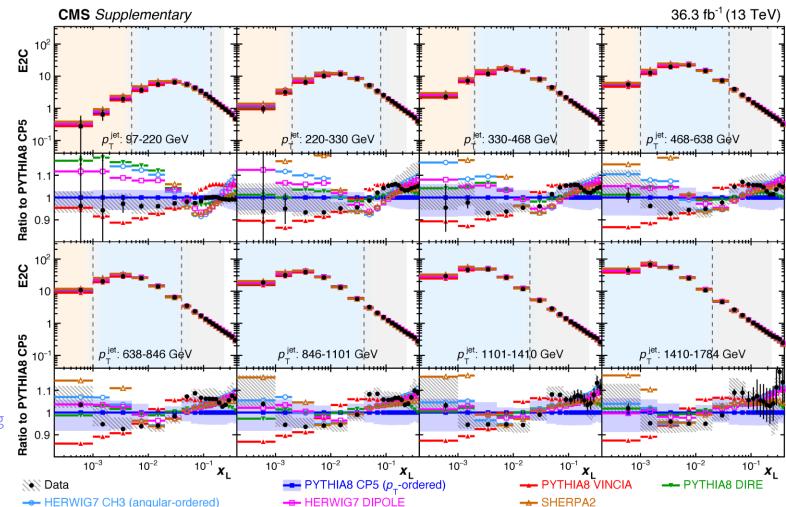

energy weight


Measurements unfolded multidimensionally in $\left(p_{T,jet}, x_L, \frac{\prod_{a=1}^N E_{i_a}}{E^N}\right) [(8+2) \cdot (20+2) \cdot 20 \text{ bins}]$

 \rightarrow multi-count observables, and two leading jets in event used \Rightarrow large (upto 40%)

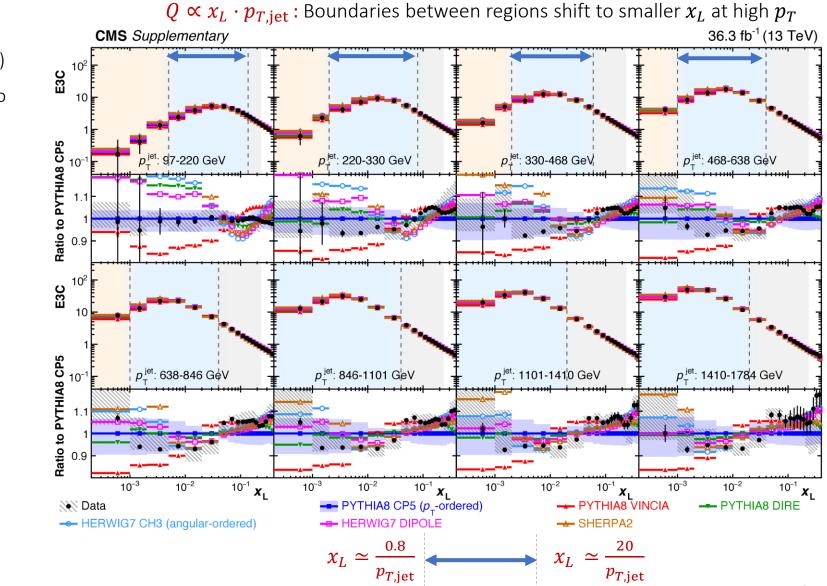
statistical correlations between x_L and p_T bins, track both in input covariance matrices

- \rightarrow halve data being unfolded for EnC's, statistically decorrelated E2C and E3C unfolding
- \rightarrow iterative Bayesian unfolding (D'Agostini): 7 iterations until p-value > 0.05
- \rightarrow efficiency (bin-by-bin) correction for counts of unmatched particle-level objects



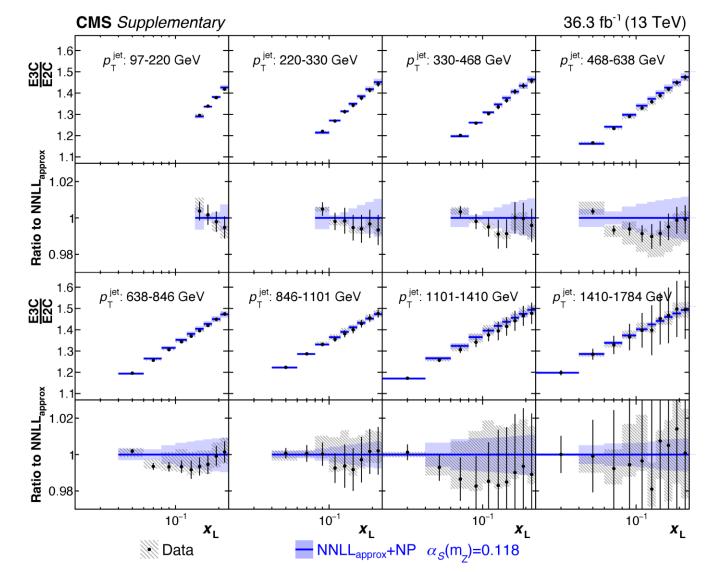
E2C: Unfolded measurements & uncertainties

- Data are compared to various parton shower models, \rightarrow no one model to describe them all (across p_T bins)
 - $ightarrow \sim 10-15\%$ disagreement generally, similar to the primary LJP density measurement
- Leading contributions to uncertainties:
 → shower and model uncertainties: 2 10%
 → neutral hadron energy scale: 1 2%
- Systematic contributions considered:
 - ightarrow photon and charged/neutral hadron energy scale
 - ightarrow (global) jet energy scale and resolution
 - ightarrow PU, tracking efficiency, trigger prefiring
 - \rightarrow QCD scale in parton shower and in hard scattering
 - \rightarrow Underlying event tune, parton shower tunes


 \rightarrow PDF variations

E3C: Unfolded measurements

CERN-EP-2024-010


- No one model to describe them all (across p_T bins) $\rightarrow \sim 10 - 20\%$ disagreement generally, similar to the primary LJP measurement
- Leading contributions to uncertainties:
 - \rightarrow shower and model uncertainties: 2-10%
 - ightarrow neutral particle energy scale: 1-2%

E3C/E2C: Comparisons to NLO+NNLL approx

W. Chen, J. Gao, Y. Li, Z. Xu, X. Zhang, HX. Zhu; JHEP 05 (2024) 043

- Bin-by-bin hadronization factor applied to NLO+ NNLL_{approx}
 calculations to match to unfolded hadron-level measurement
 - → account for $p_T > 1$ GeV threshold for hadrons, averaged hadron/parton level distributions in PYTHIA and HERWIG → corrections 5-40% for E2C, E3C and 0-3% in ratio
- Data shapes agree well with calculations
- Theory systematics
 - \rightarrow QCD scale of NNLL_{approx} predictions and of hard scattering \rightarrow hadronisation factors, UE/PS modeling, PDF uncertainties

D'Agostini unfolding

• Iterative, unfolding with a stopping criterion over steps t, number of iterations \leftrightarrow level of regularisation

$$\lambda_{j}^{(t+1)} = \lambda_{j}^{(t)} \sum_{i=1}^{n} \frac{R_{i,j} v_{obs,i}}{\sum_{k=1}^{n} R_{i,k} \lambda_{k}^{(t)}} \text{ ; input prior (MC): } \lambda^{(0)} = \lambda^{MC} \left(v_{obs, MC} \right)$$

• χ^2 -test in smeared space:

 \rightarrow test compatibility of unfolded particle-level distribution, folded back to detector level

minimize:
$$\chi^2 = (\vec{v}_{observed} - \vec{v}_{folded}) V_{(stat. only)}^{-1} (\vec{v}_{observed} - \vec{v}_{folded})$$

 \rightarrow stop when folded and input (data-bkg.) distributions are statistically compatible (p > 0.05)

• LJP measurement: Decorrelating shower and hadronization uncertainties by uncorrelated variations of response matrix and input prior from nominal and alternate MCs: PYTHIA8 CP5 and HERWIG7 CH3; take the difference between unfoldings with nominal RM+MC prior (PYTHIA8+PYTHIA8) and alternates: (PYTHIA8+ HERWIG7), (HERWIG7 +PYTHIA8)

→ estimate **uncorrelated** systematic from symmetrized variations of shifts of alternate unfoldings