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e Jets are experimental signatures of quarks and gluons in high energy processes. \ ----- =

o They are built: . ‘p\ Pariicledef Energy deposfions
m  with anti-k, algorithm of cone size R=0.4 or 1.0.
m using constituents which combine information from charged particle
tracks and calorimeter energy deposits:
e PFlow: combines tracks and topo clusters
e UFO: combines PFlow and Track Calo Cluster methods, which
correct the topo-cluster spatial coordinates with matched track
information at high pr.
e Detector-level jets need to be calibrated to the truth level, in order to compensate for
detector and reconstruction-based limitations.
e Developments in the reconstruction and calibration of hadronic objects and missing
transverse momentum will be presented.
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https://cds.cern.ch/record/2275636/files/ATL-PHYS-PUB-2017-015.pdf;
https://atlassoftwaredocs.web.cern.ch/AnalysisSWTutorial/obj_jet_intro/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-05/fig_02.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-02/

The ‘cell-time’ cut
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Topocluster calibration using
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hadronic Cell Weighting (LCW) which aims to correct for hadronic £ 1'5;—"::?:: *********************** E
non-compensation, and energy losses due to out of cluster and = F_:_‘?f;_,_gﬁﬁ""; e >
out of calorimeter deposits C | —— 1 —

o This is done using cluster moments and lookup tables to osEo_ W __ K -
have an associated weight according to the probability of - . Y,
having a hadronic or electromagnetic cluster. — ; S ""1"0 — 1(')2 R E

ESP [GeV] »
4
o B I A DALY ISR ) -

e New approach: Application of Machine Learning to topocluster 3 3 [ ATLAS Simulation Preliminary ___ o\ 1 W
calibration. :@ 11— vi: 13Tev Ami'TE'SR =04 EL\ATOPO s DN training - rl\)
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-019/

Global calibration and Global Neural Network
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https://link.springer.com/article/10.1140/epjc/s10052-023-11837-9
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https://cds.cern.ch/record/2860610/files/ATL-PHYS-PROC-2023-017.pdf
https://cds.cern.ch/record/2905688/files/ATL-PHYS-PUB-2024-015.pdf
https://cds.cern.ch/record/2904862/files/ATL-COM-PHYS-2024-560.pdf

Reconstructed jet Calorimeter cells

E/p method: In situ JES derived from
single particle measurements ,

correct/smear using
single particle

e JES is derived by shifting and smearing each particle in the jet by the measured o 2 ZfK
calorimeter response and uncertainties. */; P
o  Traditionally measured in minimum bias collisions using isolated tracks calormeer by Sable paricies
and having limited kinematic reach up to 20 GeV.
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https://arxiv.org/abs/2407.15627
https://cds.cern.ch/record/2904424/files/ATL-COM-PHYS-2024-548.pdf

Using pile- up for physics [1]

ATLAS

I
proton-proton (pp) Online '

collisions
- (RBC)

Bunch crossing (BC) Trlgger rates
BC rate: ~30 MHz (full det. readout)
2015-18: 1 kHz
2022-25: 3 kHz
2029-41: 10 kHz

Num. inelastic interactions
2015-18: 34
2022-25: ~60
2029-41: 140-200

e New reconstruction strategy to increase the statistics for hadronic

processes at low energy

Offline

Primary vertices o O
(F)’IVS) 'lx};i{t x
S e
1PV = 1 pp collision . :Iil.:f:.d 1 PPV

Recorded BC

Trigger-based approach:
Analyse triggered collision
Discard pileup collisions

Pile-up-based approach:
Veto triggering PVs (TPVs)
Reconstruct pile-up PVs (PPVs)
Analyse PPVs of interest

Events / GeV

e The Triggering Primary Vertex can be removed and jets from other

vertices are used to reconstruct pile-up.

o Use only jets from the same collision.
o Use only well understood jets within the tracker coverage

o Remove out-of-time jets

e With this approach we have more data compared to the

single-triggers with p_ < 65 GeV.
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https://arxiv.org/abs/2407.10819
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https://arxiv.org/abs/2407.10819
https://cds.cern.ch/record/2904749/files/ATL-COM-PHYS-2024-555.pdf;

Calibration of large-R jets using

Deep Neural Network

Simultaneous calibration of energy and mass of UFO
Constituent Subtraction-Soft Killer (CSSK) large-R jets
using one DNN.

Jet energy response of the DNN calibration is closer to
unity than the standard calibration.

Jet energy resolution is significantly improved with the
DNN calibration.

Jet Energy Response, R

Jet mass response of boosted massive jets (W/Z, Higgs
boson and top-quark decay) shows the improvements of
the DNN calibration compared with the standard one
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https://arxiv.org/abs/2311.08885
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° p.™ss significance is an important quantity which helps to
discriminate signal from background, in the context of searches for
new physics

MC/Data
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o o, defines the longitudinal resolution to me‘SS and p, ; defines
the correlations between transverse and longitudinal resolution
relative to p ™

o  The low values are dominated by events with an expected truth
p;™** of zero, which have some fake p ™

o  The high valued tails are more dominated by events from other
processes that have a high energy neutrino produced.
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https://arxiv.org/abs/2402.05858
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2024-01/
https://cds.cern.ch/record/2904998/files/ATL-COM-PHYS-2024-573.pdf
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co NC I usions 2 pooE. —— MC, Z—un ATLAS Internal
2 s000E. —— Data Data 2022-2023
E Vs=13.6 TeV, 57 fb’!
1800 — .
. P . . . . E \ Loose PFlow p?'ss
e Significant improvements on reconstruction and calibration of 1600532 Z->pp, inclusive jet selection

hadronic objects in ATLAS: 1200
o  Pileup mitigation by introducing the cell-time cut in the s =
topoclustering algorithm. 600F —
o Reconstruction of the missing transverse momentum and it: ;“335: ,Z
significance, with important impact on dark matter searches g 1.51: _ B
o New techniques to extend the energy/mass regions and the & **———s——s—e—7 50— 50700 E
accuracy of the standard jet calibration methods. pms [GeV] u8
m  New ML-based techniques have been explored. R e ermneas A ntaaassapeenesmat
o Novel approach to use pile-up collisions to increase the G [ 5=13.6TeV, 57 ' ~2022 data |
statistics for low energy hadronic processes. 104?3’?2553? (PFiow ]
e Summary of all public plots for BOOST, prepared by the ATLAS
Outreach Group: 10°
https://atlas.cern/Updates/News/Summary-BOOST-2024,
A07
g1z
T 08
e Stay tuned for new ideas and further improvements! o8 R U e “‘166"‘165“‘11'6'[;‘11;/?
13
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2024-03/

Thank you!
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Missing Projection fraction (MPF) method EPJ.C83(2023)761
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https://cds.cern.ch/record/2854733/files/ANA-JETM-2022-01-PAPER.pdf

b_ Jet Energy Scale EPJ.C83(2023)761
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7. | I L L
50 100 200 300

ref
Py [GeV]
2 005 —— 2 0.08 7 ; —

= [ ATLAS — Photon resolution | £ + ATLAS — Photon resolution -|

H H H £ L Vs=13TeV, 140", y+jet ~ — Photon scale % |l Vs=13Tev, 140", y+jet ~ — Photon scale
e b-jets correction was found to differ from the 8 [ ik A-04@Prowdes) T 8 |k ncoserowss M
5 0048 17*1<0.8 — Second-jet veto | S 0.061 17!l < 0.8, 77% b-tag efficiency —i:cond-jet veto, |

. . . » " » ]
w w --+- Photon purity
one for inclusive jets. e 2 oy : - loton

2 0.03- - Statistical — S -----MC generator
2 r . mam MC generator | B — b-tagging b
g [ Total uncertainty | I 0.04— [ Total uncertainty —|
C L 1 N 1

0.02_— 5
200 300 1000 200 300 400
pre1 [GeV] p;_e' [GeV]
T


https://cds.cern.ch/record/2854733/files/ANA-JETM-2022-01-PAPER.pdf

b-JES

Jet Feature Description

pr Transverse momentum

n Signed pseudorapidity

mi Jet mass

Track & Charged UFO Feature Description

q/p Track charge divided by reconstructed momentum

dn Pseudorapidity of track relative to the jet

d¢ Azimuthal angle of the track, relative to the jet ¢

dy Transverse IP: Closest distance from track to beam-line in the transverse plane
Zosin@ Longitudinal IP: Closest distance from track to PV in the longitudinal plane.
a(q/p) Uncertainty on q/p

o(6) Uncertainty on track polar angle 6

o(¢) Uncertainty on track azimuthal angle ¢

s(dp) Significance of transverse IP

5(zo sin 0) Significance of longitudinal IP times the sin of the polar angle
nPixHits Number of pixel hits

nSCTHits Number of SCT hits

nIBLHits Number of IBL hits

nBLHits Number of B-layer hits

nIBLShared Number of shared IBL hits

nIBLSplit Number of split IBL hits

nPixShared Number of shared pixel hits

nPixSplit Number of split pixel hits

nSCTShared Number of shared SCT hits

LeptonID § Information on if the track was used in lepton reconstruction
Charged & Neutral UFO Feature Description

pl;l"“’ ¥ Transverse momentum of charged flow constituent

Egow ¥ Energy of charged flow constituent

dnpiow ¥ Pseudorapidity of track relative to the large-R jet

deriow Azimuthal angle of the track, relative to the large-R jet ¢
driow F Angular distance of the track from the large-R jet direction




b-JES

Soft Muon Input Description

Pt Transverse momentum

n Signed pseudorapidity

¢ Azimuthal angle

dR Angular distance of the soft muon from the small-R jet axis

q/p Muon charge divided by the reconstructed momentum

M Balance Signifi Ratio of the difference in momentum measured by the ID and MS to the

uncertainty on the energy loss measured by the calorimeters
Scattering Neighbour Significance ~ Sum of the significances of the angular difference A¢ between pairs of
adjacent hits along the track, multiplied by the particle charge

p’T” Orthogonal projection of the muon pr onto the jet axis

do T IP: Closest dist: from track to b line in the
plane

20 Longitudinal IP: Closest distance from track to PV in the longitudinal plane

o (do) Uncertainty on measurement of transverse IP

o (20) Uncertainty on measurement of longitudinal IP

do/o(do) Significance of transverse IP

20/0 (20) Signi: of longitudinal IP

Soft Electron Input Description

Py Relative pr of the electron with respect to the jet

dR Angular separation between electron and jet axis

pae Isolation variable

In] Absolute value of p pidi

s(dy) Ti IP: Closest dist: from track to b line in the
plane

z(dp) Longitudinal IP: Closest distance from track to PV in the longitudinal plane

s(do/oa,) Significance of the transverse IP

Agres A¢ The azimuthal angle difference A¢ between the cluster position in the
middle layer and the track.

Elp Ratio of the cluster energy to the track momentum

Rhaa Ratio of Et in the hadronic calorimeter to Et of the EM cluster

Rhaar Ratio of transverse energy Et in the first layer of the hadronic calorimeter to
E7t of the EM cluster

E,atio Ratio of the energy difference between the largest and second largest energy
deposits in the cluster over the sum of these energies

W Lateral shower width

Reta Ratio of the energy in 3 X 7 cells over the energy in 7 X 7 cells centered at
the electron cluster position

fi Ratio of the energy in the strip layer to the total energy in the EM accordion
calorimeter

f3 Ratio of the energy in the back layer to the total energy in the EM accordion
calorimeter

PHF probability of being from heavy flavour decay 1 9



Topocluster calibration

The choice of features given to the network to learn .%511\1’13 is driven by their potential sensitivity to

electromagnetic and hadronic signal characteristics in the calorimeters,

A deposited energy — in a complex way represented by the topo-cluster signal EcEl{ﬁ itself;

B detector geometry — the signal characteristics of the various calorimeter subsystems in ATLAS
contributing to the topo-cluster, like the level of non-compensation and the absorption power
(leakage), as well as the energy sharing around the respective inactive transition regions between
them;

C shower development — the differences between electromagnetic and hadronic showers in terms of
starting point, size and signal compactness;

D intrinsic shower fluctuations — the variations in the shower development of hadronic showers;
E signal strength and relevance — signal significance measured by signal-over-noise;

F collision environment — effects of event topology/nearby signals and pile-up on the topo-cluster
signal.
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GSC

The six stages of the GSC, in the order of application, are

* fcharged: the fraction of the jet pr carried by charged particles, as measured using ghost-associated
tracks with pr > 500 MeV, |7%!| < 2.5,

* frieo: the fraction of jet energy (Ef,c) measured in the first layer of the hadronic tile calorimeter,
7% < 1.8,

* fiar: the Eg,c measured in the third layer of the electromagnetic LAr calorimeter, |n%| < 3.5,
* Niack: the number of tracks with pt > 1 GeV ghost-associated with the jet, |17d°‘| <2.5,

* Wiack: also known as track width, the average pr-weighted transverse distance in the 7-¢ plane,
between the jet axis and all tracks of pt > 1 GeV ghost-associated with the jet, || < 2.5,

* Nsegments: the number of muon track segments ghost-associated with the jet, %] < 2.8.
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GNNC

Calorimeter JLA0-3+ The Ef,c measured in the Oth-3rd layer of the EM LAr calorimeter
JTile0s—2 The Ef:,c measured in the Oth-2nd layer of the hadronic tile calorimeter
faec,0-3 | The Efg,. measured in the Oth-3rd layer of the hadronic end cap

calorimeter
frcavL,0-2 | The Ef,c measured in the Oth-2nd layer of the forward calorimeter
Noyo9, The minimum number of clusters containing 90% of the jet energy

Jet kinematics | plFS * The jet pr after the MCJES calibration
n‘;re‘ The detector n

Tracking Wirack ¥ The average pr-weighted transverse distance in the n-¢ plane

between the jet axis and all tracks of pt > 1 GeV ghost-associated
with the jet
Niseic™ The number of tracks with pt > 1 GeV ghost-associated with the jet
Jehargea™ The fraction of the jet pt measured from ghost-associated tracks

Muon segments | Nsegments® | The number of muon track segments ghost-associated with the jet

Pile-up U The average number of interactions per bunch crossing
Npy The number of reconstructed primary vertices

Table 1: List of variables used as input to the GNNC. Variables with a * correspond to those that are also used by the

GSC.
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E/p

Table 1: Overview of the input measurements and uncertainties used by the deconvolution method used for the
calculation of the data-to-MC jet response correction.

Particle pr [GeV] comment
hadrons pr <0.5 5 % uncertainty
05<pr<10 isolated tracks in minimum bias collisions
10 < p1r < 300 pions from 7-lepton decays in W — 7v sample
pr > 300 MC out-of-range studies and using JES uncertainty constraint
ely 5 < pt <200 standard e /7y calibration from Z — e*e™
and 0.5% uncertainty for effects in jets
pr > 200 extrapolation based on electron calibration
pr <5 additional 1% uncertainty from 7° — yy mass peak constraint
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Calibration of large-R jets using
Deep Neural Network [2]

e Steps:
o input processing: n annotation
m compute additional features based on n to
encode the proximity of the jet to the
different regions of the detector to adapt to
the complex response dependency on n
o core : several dense layers which are common to
both E and mass calibration
o deep tail : early fork between E/m outputs
attention layers : helps the NN to learn which
inputs are important for the mass calibration.
o output: calibration factors for E and m

Residual connection

Input processing

Input Layer (21)

Concatenate (60)

Extract 7 (1)

7 annotation (12)
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