Missing Transverse Momentum Performance at

Working points & performance

20 25

15 10

 \bigcirc

Additional proton-proton interactions (pile-up) contribute to 'fake' p_T^{miss}. Working points (WPs) set different selections on jets entering the $\mathbf{p}_{\mathsf{T}}^{\mathsf{miss}}$ calculation and mainly differ in the forward jet p_T cut. WP choice based on tradeoffs between reducing pile-up contamination and missing real jets, based on event topology.

- A Performance check: Tighter WPs better at higher pile-up tt events, but cut too much real hadronic activity at low pile-up (left). Tight has smaller bias at low p_T^{miss} due to removing pileup while not removing too many hard scatter jets (right).
- Performance check: The average projection of p₁^{miss} on to the Z boson axis as a function of the Z boson's p_T. Negative values show an underestimation of the hadronic balance with the Z boson. Tightening the WP misses more of the hadronic activity

Full p_{\parallel}^{soft} calibration. The calibrated MC $\langle p_{\parallel}^{soft} \rangle$ (top) is shifted to match the data with the additional terms in ratio method. Green bands show statistical uncertainties from the calibration procedure. Agreement post-calibration is

Science and

Technology

UNIVERSITY OF

The perpendicular component is calibrated by scaling the observed value of each MC event by the ratio of the data and MC resolutions [3]:

The parallel scale tends to oppose \mathbf{p}_{T}^{hard} , so the parallel component is calibrated by using the resolution ratio, and data and MC distribution averages to correct the scale and resolution concurrently:

 $\sigma(u_{\parallel})^{\mathrm{data}}$ $r_{\parallel} =$ $\sigma(u_{\parallel})^{
m MC}$

 $u_{\parallel}^{\rm MC, corr} = u_{\parallel}^{\rm MC} \cdot r_{\parallel} + \langle u_{\parallel}^{\rm data} \rangle - \langle u_{\parallel}^{\rm MC} \rangle \cdot r_{\parallel}$

Calibration factors derived in $Z \rightarrow ee$. Calibration validated in various final states (e.g. $Z \rightarrow \mu\mu$, $t\bar{t}$, $W \rightarrow \mu\nu$, $Z \rightarrow \tau\tau$, Z via VBF, y+jets). Any non-closure used to derive additional uncertainties.

Current TST systematics

TST systematics calculated in the *three variables by quantifying the hard/soft term balance in events with no real \mathbf{p}_{T}^{miss} . Envelope set as maximal data/MC difference for different generators in p_T^{hard} bins.

▼ Conservative uncertainty driven by largest generator data/MC difference in each bin of p_hard.

New TST calibration systematics

New reduced systematics from calibration procedure. Uncertainty on the calibration ratio factor derived and applied three times, with the nominal, up-variation, and down-variation:

Resulting resolutions of the up- and down-variations correspond to uncertainties of the TST post-calibration (presented as the green error bars in the calibration plots).

The calibration ratio factor for $\sigma(p_{\perp}^{soft})$ is derived in Z \rightarrow ee (top). Closure is excellent and uncertainty bands correspond to statistical uncertainties from the calibration procedure. Calibration validated in $Z \rightarrow \mu\mu$ (bottom). Closure is very good but uncertainty band includes additional non-closure contribution.