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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout
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Figure 1: A visualization of the decomposition of an observable via Eq. (1.1). Each particle

in the event is mapped by � to an internal (latent) particle representation, shown here as

three abstract illustrations for a latent space of dimension three. The latent representation is

then summed over all particles to arrive at a latent event representation, which is mapped by

F to the value of the observable. For the IRC-safe case of Eq. (1.2), � takes in the angular

information of the particle and the sum is weighted by the particle energies or transverse

momenta.

where this appears is learning from point clouds, sets of data points in space. For instance, the

output of spatial sensors such as lidar, relevant for self-driving car technologies, is often in the

form of a point cloud. As point clouds share the variable-length and permutation-symmetric

properties with collider events, it is worthwhile to understand and expand upon point cloud

techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in Ref. [63], demonstrates

how permutation-invariant functions of variable-length inputs can be parametrized in a fully

general way. In Ref. [63], the method was applied to a wide variety of problems including red-

shift estimation of galaxy clusters, finding terms associated with a set of words, and detecting

anomalous faces in a set of images. The key observation is that summation, which is clearly

symmetric with respect to the order of the arguments, is general enough to encapsulate all

symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary

– 3 –
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Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10) ) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.
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of quarks and gluons were generated as background using the same PYTHIA generator and
center-of-mass energy as for W bosons.

4. Jet images
In order to use image processing and computer vision approaches for jet tagging at the LHC,
a new data representation is introduced: the jet-image [14]. Jet images build on the notion of
a detector as pixels on a digital camera, and jets as images, enabling the connection between
the fields of computer vision and jet substructure and jet physics. Jet images are defined by a
25 ⇥ 25 grid of size (0.1 ⇥ 0.1) in (⌘ ⇥ �) space centered around the axis of R=1.0 anti-kt jets.
The intensity of the pixels given by the transverse momentum pT of the pixel cell. Prior to
the application of computer vision classification techniques, a series of pre-processing steps to
account for the space-time symmetries of jets images are applied. Pre-processing for the specific
case of the identification of 2-prong jets such as those from the decay of W bosons, is defined
by a translation that places the leading pT subjet at the center of jet-image, a rotation such
that the second pT leading subjet is placed down below, and a flip operation such that the right
side of the image has higher total pT than the left. The goal of these pre-processing steps is
to make it easier for image classification algorithms to focus on the important di↵erences in
physics between images. Jet-image pre-processing is illustrated in Figure 3 which shows the
average jet-image of W (signal) and QCD (background) jets in a narrow pT and mass bin before
and after the the pre-processing steps.
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Figure 3. Average jet-image for W jets (top panel) and QCD jets (bottom panel) with
240 < pT < 260 GeV and 65 <mass< 95 GeV before (left) and after (right) pre-processing.

5. Jet tagging using deep neutral networks
The concept of jet-images has enabled the use image classification methods for the identification
(tagging) of boosted W boson and top quarks at the LHC. In the first case, through the use of
Fisher jets [14]: a linear classifier inspired by facial recognition algorithms. In the second case,
by the use of neural networks [15]. An earlier use of image-based event reconstruction from
the OPAL Collaboration at the LEP collider is described in [16]. This paper focuses on the
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Figure 3. Average jet-image for W jets (top panel) and QCD jets (bottom panel) with
240 < pT < 260 GeV and 65 <mass< 95 GeV before (left) and after (right) pre-processing.

5. Jet tagging using deep neutral networks
The concept of jet-images has enabled the use image classification methods for the identification
(tagging) of boosted W boson and top quarks at the LHC. In the first case, through the use of
Fisher jets [14]: a linear classifier inspired by facial recognition algorithms. In the second case,
by the use of neural networks [15]. An earlier use of image-based event reconstruction from
the OPAL Collaboration at the LEP collider is described in [16]. This paper focuses on the
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 “TRANSFORMER” :SELF ATTENTION LAYERS 

• Data is matrix of n(#constituent) x d(feature) 
→  

• Attention Matrix evaluate the correlation of 
constituents taking into account all 
features. Higher attention elements 
indicates important correlations 

•  transformation   does not change the data 
dimension. Structure of data retained for 
the next transformation. 
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Self Attention:

self-attention allows each element in the sequence to 

attend to all other elements, capturing both local and 

global dependencies. This is achieved through the 

calculation of attention scores, which are used to linearly 

combine the values associated with di%erent positions.
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dimension as the input
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BUT… PHYSICS BEFORE THE NETWORK 

• Hard Process = Partons y  

• Factorization 

• a jet:    P(hadrons in jets | parton  ) =  

•  jet with substructure          

• Maybe  several  fatjets in an event      

       

P({xi} |y)

P({xi} |{yα})

P({xi}, {x′ j}, {yα}, {y′ β}) ∼ P({xi} |{yα})P({x′ i} |{y′ β}) P({yα , y′ β})

Why don’t you construct the network focusing on QCD scale structure
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FIG. 1. Schematical figure of the mixer layer in the Mixer network. A hard parton from the hard process goes through the
parton shower, creating subjets. The information of jet constituents is processed by two MLPs, then analyzed together with
subjet information via the cross attention layer.

The result is given in section V. In section VI, we
explain the network output using di↵erent interpretable
methods, including centred kernel alignment and atten-
tion maps to highlight network e�cacy in collider analy-
sis tasks.

II. NETWORK ARCHITECTURE

In this section, we explain the structure of our net-
work. As we already stressed in the introduction, the
core of our networks is a simple mixer layer integrated
with the subjet information by cross-attention so that
the network maintains the hierarchy between low- and
high-scale physics.

The proposed network comprises distinct layers: an
input layer, a mixer layer, an aggregation layer and a final
fully connected (FC) layer. The permutation invariance
of the network is ensured by the aggregation layer and
cross-attention heads within the mixer layer.

The core of the network is the mixer layer, which con-
sists of two components, two MLPs and cross-attention
heads and discussed in subsection II. A. The first MLP
acts on each particle in the cloud individually, while the
second one acts on each feature of the mixed particles
after transposing the dataset. The MLP shares weights
across the processing layers, ensuring that all particle and
feature tokens obey the same transformation (See figure
2). This allows the network to learn a unified represen-
tation among di↵erent features.

Input data to the mixer layer passes sequentially
through two MLPs consisting of densely connected neural
network layers. It is then passed to the cross-attention

heads along with the subjet dataset. Note that the
two MLPs operate similarly to transformer models with
self-attention heads, combining particles and their corre-
sponding features across the entire dataset. This enables
the extraction of local and global structural information
within the event. A side e↵ect is that the MLPs have
smaller tunable parameters to express the complex struc-
ture of the event compared to the other particle cloud
models such as particle Net or transformers.

To compensate for the less expressivity due to smaller
parameters of the Mixer network, we introduce a second
input dataset containing subjets to discern the substruc-
ture of top and QCD jets. The details of the subjet
clustering methods are not essential for the network de-
scription and are discussed in Section 4. The additional
dataset, together with the output of the MLPs, are an-
alyzed by the network using multi-head cross-attention
and described in subsection II. B. The mixer layer pre-
serves the dimension of the input dataset and can be re-
peated for better performance with more complex data.
The network structure is shown in Fig. 2.

To further ensure the permutation invariance of the
network, mixer layers are followed by a global Max-
Pooling layer. An additional FC layer is added before
the output layer with two neurons.

A. MLP mixer

At the heart of the MLP Mixer lies its features mixing
mechanism. It begins with feature mixing by transposing
the particle and feature axes, and then it continues with
particle MLP mixing so that the input data is mixed in

parton shower 

parton

“Physics SCALE” 
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FIG. 1. Schematical figure of the mixer layer in the Mixer network. A hard parton from the hard process goes through the
parton shower, creating subjets. The information of jet constituents is processed by two MLPs, then analyzed together with
subjet information via the cross attention layer.

The result is given in section V. In section VI, we
explain the network output using di↵erent interpretable
methods, including centred kernel alignment and atten-
tion maps to highlight network e�cacy in collider analy-
sis tasks.

II. NETWORK ARCHITECTURE

In this section, we explain the structure of our net-
work. As we already stressed in the introduction, the
core of our networks is a simple mixer layer integrated
with the subjet information by cross-attention so that
the network maintains the hierarchy between low- and
high-scale physics.

The proposed network comprises distinct layers: an
input layer, a mixer layer, an aggregation layer and a final
fully connected (FC) layer. The permutation invariance
of the network is ensured by the aggregation layer and
cross-attention heads within the mixer layer.

The core of the network is the mixer layer, which con-
sists of two components, two MLPs and cross-attention
heads and discussed in subsection II. A. The first MLP
acts on each particle in the cloud individually, while the
second one acts on each feature of the mixed particles
after transposing the dataset. The MLP shares weights
across the processing layers, ensuring that all particle and
feature tokens obey the same transformation (See figure
2). This allows the network to learn a unified represen-
tation among di↵erent features.

Input data to the mixer layer passes sequentially
through two MLPs consisting of densely connected neural
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self-attention heads, combining particles and their corre-
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within the event. A side e↵ect is that the MLPs have
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To compensate for the less expressivity due to smaller
parameters of the Mixer network, we introduce a second
input dataset containing subjets to discern the substruc-
ture of top and QCD jets. The details of the subjet
clustering methods are not essential for the network de-
scription and are discussed in Section 4. The additional
dataset, together with the output of the MLPs, are an-
alyzed by the network using multi-head cross-attention
and described in subsection II. B. The mixer layer pre-
serves the dimension of the input dataset and can be re-
peated for better performance with more complex data.
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To further ensure the permutation invariance of the
network, mixer layers are followed by a global Max-
Pooling layer. An additional FC layer is added before
the output layer with two neurons.
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At the heart of the MLP Mixer lies its features mixing
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Cross attention to focus on the P(h| (sub)jet)   
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Needed plots:

1. Network plot

2. minimum spanning tree + hierarchical dendogram (on how the hdbscan work)

3. four plots for subjets clustering for the top case

4. ROC for varying radius from 0.1 to 0.5 using CA

5. plot for the input subjets for the top and qcd jets

6. plot for the cross attention

7. ROCs for every thing.
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fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
dropout, and layer norm on the channels.

they operate on each token independently and take individual rows of the table as inputs. The
token-mixing MLPs allow communication between different spatial locations (tokens); they operate
on each channel independently and take individual columns of the table as inputs. These two types of
layers are interleaved to enable interaction of both input dimensions.

In the extreme case, our architecture can be seen as a very special CNN, which uses 1⇥1 convolutions
for channel mixing, and single-channel depth-wise convolutions of a full receptive field and parameter
sharing for token mixing. However, the converse is not true as typical CNNs are not special cases of
Mixer. Furthermore, a convolution is more complex than the plain matrix multiplication in MLPs as
it requires an additional costly reduction to matrix multiplication and/or specialized implementation.

Despite its simplicity, Mixer attains competitive results. When pre-trained on large datasets (i.e.,
⇠100M images), it reaches near state-of-the-art performance, previously claimed by CNNs and
Transformers, in terms of the accuracy/cost trade-off. This includes 87.94% top-1 validation accuracy
on ILSVRC2012 “ImageNet” [13]. When pre-trained on data of more modest scale (i.e., ⇠1–
10M images), coupled with modern regularization techniques [49, 54], Mixer also achieves strong
performance. However, similar to ViT, it falls slightly short of specialized CNN architectures.

2 Mixer Architecture

Modern deep vision architectures consist of layers that mix features (i) at a given spatial location,
(ii) between different spatial locations, or both at once. In CNNs, (ii) is implemented with N ⇥N

convolutions (for N > 1) and pooling. Neurons in deeper layers have a larger receptive field [1, 28].
At the same time, 1⇥1 convolutions also perform (i), and larger kernels perform both (i) and (ii).
In Vision Transformers and other attention-based architectures, self-attention layers allow both (i)
and (ii) and the MLP-blocks perform (i). The idea behind the Mixer architecture is to clearly separate
the per-location (channel-mixing) operations (i) and cross-location (token-mixing) operations (ii).
Both operations are implemented with MLPs. Figure 1 summarizes the architecture.

Mixer takes as input a sequence of S non-overlapping image patches, each one projected to a desired
hidden dimension C. This results in a two-dimensional real-valued input table, X 2 RS⇥C . If the
original input image has resolution (H,W ), and each patch has resolution (P, P ), then the number of
patches is S = HW/P

2. All patches are linearly projected with the same projection matrix. Mixer
consists of multiple layers of identical size, and each layer consists of two MLP blocks. The first one
is the token-mixing MLP: it acts on columns of X (i.e. it is applied to a transposed input table X>),
maps RS 7! RS , and is shared across all columns. The second one is the channel-mixing MLP: it
acts on rows of X, maps RC 7! RC , and is shared across all rows. Each MLP block contains two
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*Subjet cone size R=0.3  
*HDBSCAN is algorithm without distance measure

Models AUC R50% #Parameter Time (GPU%)

ParT 0.9858 413+-16 2.14M 612

Mixer+subjet (CA) 0.9856 392+-5 86.03K 33

(AK) 0.9854 375+-5 86.03K 33

(HDBSCAN) 0.9859 416+-5 86.03K 33

LorentzNet 0.9868 498+-18 224K
PELICAN  

(Lorents Invariance) 
0.9869 - 45K -

Performace comparable to Particle Transformer but much faster and lighter 
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INTERPRETATION USING CKA SIMILARITY
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where M = XX
T and N = Y Y

T are two Gram matrices
of the two hidden layers with d⇥d dimension. The size of
the Gram matrices depends only on the number of inputs,
therefore, the CKA(M, N) can be used to compare any
layers with di↵erent numbers of neurons or networks of
di↵erent models.

The Hilbert-Schmidt Independent Criterion (HISC)
[65] between two matrices is defined as

HSIC(M,N) =
1

(d � 1)2
Tr(MHNH) , (20)

where a d⇥d centering matrix H is defined as Hij = �ij�

1/d, therefore
P

i AHij =
P

j aHij = 0 for A = M, N .
Centering the matrices ensures that the CKA similarity
is not overly influenced by outliers or extreme values in
the data, leading to more robust comparisons between
representations.

The value of the CKA ranges between [0, 1]. A higher
CKA value suggests that these layers have captured re-
dundant information from the input features. If two sub-
sequent layers are similar in the CKA, it indicates the
second layer leads to negligible improvement in classifi-
cation accuracy. In such instances, trimming these layers
can reduce model complexity without compromising clas-
sification performance. Conversely, the layers with lower
CKA values have captured distinct information from the
data, and enhanced the classification performance

FIG. 9. The CKA similarity of top jet events (top plot)
and QCD jet (bottom). Axes represent the network layers.
FC(MLP1) and FC(MLP2) are the fully connected layers in
the first and second MLP of mixer layers, respectively. The
last FC represents the last FC layer in the network, and At-
tention is the multi-heads cross-attention.

The CKA results are depicted in Fig. 9, showing the
top jet events in the upper plot and QCD jet events in the
lower plot. The analysis is based on a sample of 5000 test
events, with the subjets dataset clustered using the CA
algorithm with R = 0.3. CKA values are computed for
distinctive model layers, including the embedding layer,
the two FC layers for the first and second MLP mixer, the
multi-head cross-attention layer, and the final FC layer.

In general, layers with low correlations imply that they
capture independent information from each other, under-

scoring their significance in the network’s decision mak-
ing process, see for example figure 3 in [63].

The multi-head cross-attention layer shows lower simi-
larity with the two MLPs for the top jet with CKA value
30% and 57% for the QCD jets. The top jet CKA values
are lower than QCD ones, which suggests the network
layers are adept at capturing distinct information and
are capable of learning the substructure of the top jet.
The MLP mixer layers must have focused on the other
features of the model. The first and second MLP mix-
ers exhibit low similarity. Specifically, for top events, the
two MLPs demonstrate lower CKA values around 58%
compared to the QCD events with CKA value 76%, sug-
gesting that the network has learned a specific internal
structure unique to top events.

B. Attention maps

Attention maps visualize the attention scores assigned
to each particle token in the input sequence, providing a
representation of where the model focuses its attention
during the decision making process[66].

Also, it reveals the relation between particle tokens.
For instance, it highlights the information extracted

from the jet constituents relevant to the clustered subjets.
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FIG. 10. Cross-attention maps for 50000 test events of top
(top plot) and QCD (bottom plot) averaged over 15 atten-
tion heads. The X-axis shows the attention score for the first
transformed 30th jet contents, while the Y-axis shows the at-
tention score for the transformed subjets.

Fig. 10 presents the cross-attention maps for a sam-
ple of 50,000 test events, showing top jet events in the
upper plot and QCD jet events in the lower plot. As
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TABLE I. performance of the Mixer network for top quark tagging compared with other models. Results for EDI-net [44], Point
Cloud Transformer (PCT) [45], Lorentz Net [28], PELICAN [46], PFN [36], ParticleNET [37], and ParT [38] are quoted from
their published results. Pretrained ParticleNET and ParT have higher performance with AUC = 0.9866 and AUC= 0.9877,
respectively. The pertaining is done on the JETCLASS dataset, followed by the tuning to the top dataset. Transformer(subjet)
model is trained from scratch using the CA subjets dataset only. Training time is per epoch with a batch size of 1024. The
GPU training time is measured on an NVIDIA RTX A6000 card.

AUC Rej50% Parameters Time (GPU) [s]

JEDI-net with
P

O 0.9807 � 87.7K �

PFN 0.9819 247±3 86.1K 30

PCT 0.9855 392± 7 193.3K �

LorentzNet 0.9868 498± 18 224K �

ParticleNET 0.9858 397± 7 370K �

PELICAN 0.9869 � 45K �

ParT 0.9858 413± 16 2.14M 612

Transformer(subjets) 0.9640 186± 11 398K 129

Mixer(Anti-kt) 0.9854 375± 5 86.03K 33

Mixer(CA) 0.9856 392± 6 86.03K 33

Mixer(HDBSCAN) 0.9859 416± 5 86.03K 33

shortest training time but lacks learning of the local in-
formation shared between particles and their neighbours,
leading to relatively poor performance.

VI. INTERPRETABLE ML TECHNIQUES

ML models’ interpretability can be challenging due to
their intricate hidden layers. Understanding the model’s
architecture and learned representations is crucial for ac-
curate predictions.

Various interpretable ML methods have been devel-
oped to provide insights into how models make predic-
tions. This helps to validate model decisions. In this
section, we employ two methods that o↵ers a straight-
forward interpretation of the network outcomes, namely,
Central Kernel Alignment (CKA) and attention map vi-
sualization. CKA is a metric used to compare the sim-
ilarity between two sets of learned representations in a
high-dimensional feature space. It was first introduced
in [63] and used in collider analysis in [64].

It measures the representations learned by the net-
work layers or hidden layers of di↵erent models, consider-
ing local similarities and global structure. On the other
hand, attention maps are visual representations gener-
ated by attention mechanisms in neural networks, high-
lighting the input data most relevant for making pre-
dictions. They provide insights into the focuses of the
model during processing, aiding in the interpretation of
the decision-making process.

In the following, we apply those interpretable meth-
ods to the Mixer network trained on t a jet constituents
dataset with dimensions (100, 7) and a subjets informa-
tion with dimensions (15, 7) clustered using the CA al-
gorithm with R = 0.3. Importantly, these interpretable

methods are agnostic to the specific network configura-
tion and can be applied to other results presented in this
paper.

A. CKA similarity

CKA similarity, rooted in the principles of kernel meth-
ods and alignment-based metrics, o↵ers a comprehensive
framework for assessing the similarity between two sets
of representations learned by di↵erent models or layers
within a model. It measures the alignment between rep-
resentations in a high-dimensional feature space rather
than simply comparing their values. Unlike linear simi-
larity measures such as Pearson correlation or Euclidean
distance,

CKA captures complex relationships between repre-
sentations learned by di↵erent models or layers, making it
suitable for comparing high-dimensional and non-linearly
transformed data. The primary obstacle in analyzing
the representations of hidden layers in neural networks is
the dispersion of features across neurons, with sizes often
larger than the input dimension and varying in layers or
models.

CKA facilitates quantitative comparisons of represen-
tations both within individual networks and across dif-
ferent models. This can be done by considering the acti-
vation matrices of two hidden layers X and Y evaluated
on the same input dataset; when the data size is d, and
P1 and P2 is the number of neurons of the two di↵erent
hidden layers, X 2 Rd⇥P1 and Y 2 Rd⇥P2 . The CKA
similarity is defined as

CKA(M,N) =
HSIC(M,N)p

HSIC(M,M)HSIC(N,N)
, (19)

input 

Network1  

hidden layer 

Network 2  

hidden layer 

n event 

X(n × h1)

Y(n × h2)
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varies  for each training 
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where M = XX
T and N = Y Y

T are two Gram matrices
of the two hidden layers with d⇥d dimension. The size of
the Gram matrices depends only on the number of inputs,
therefore, the CKA(M, N) can be used to compare any
layers with di↵erent numbers of neurons or networks of
di↵erent models.

The Hilbert-Schmidt Independent Criterion (HISC)
[65] between two matrices is defined as

HSIC(M,N) =
1

(d � 1)2
Tr(MHNH) , (20)

where a d⇥d centering matrix H is defined as Hij = �ij�

1/d, therefore
P

i AHij =
P

j aHij = 0 for A = M, N .
Centering the matrices ensures that the CKA similarity
is not overly influenced by outliers or extreme values in
the data, leading to more robust comparisons between
representations.

The value of the CKA ranges between [0, 1]. A higher
CKA value suggests that these layers have captured re-
dundant information from the input features. If two sub-
sequent layers are similar in the CKA, it indicates the
second layer leads to negligible improvement in classifi-
cation accuracy. In such instances, trimming these layers
can reduce model complexity without compromising clas-
sification performance. Conversely, the layers with lower
CKA values have captured distinct information from the
data, and enhanced the classification performance

FIG. 9. The CKA similarity of top jet events (top plot)
and QCD jet (bottom). Axes represent the network layers.
FC(MLP1) and FC(MLP2) are the fully connected layers in
the first and second MLP of mixer layers, respectively. The
last FC represents the last FC layer in the network, and At-
tention is the multi-heads cross-attention.

The CKA results are depicted in Fig. 9, showing the
top jet events in the upper plot and QCD jet events in the
lower plot. The analysis is based on a sample of 5000 test
events, with the subjets dataset clustered using the CA
algorithm with R = 0.3. CKA values are computed for
distinctive model layers, including the embedding layer,
the two FC layers for the first and second MLP mixer, the
multi-head cross-attention layer, and the final FC layer.

In general, layers with low correlations imply that they
capture independent information from each other, under-

scoring their significance in the network’s decision mak-
ing process, see for example figure 3 in [63].

The multi-head cross-attention layer shows lower simi-
larity with the two MLPs for the top jet with CKA value
30% and 57% for the QCD jets. The top jet CKA values
are lower than QCD ones, which suggests the network
layers are adept at capturing distinct information and
are capable of learning the substructure of the top jet.
The MLP mixer layers must have focused on the other
features of the model. The first and second MLP mix-
ers exhibit low similarity. Specifically, for top events, the
two MLPs demonstrate lower CKA values around 58%
compared to the QCD events with CKA value 76%, sug-
gesting that the network has learned a specific internal
structure unique to top events.

B. Attention maps

Attention maps visualize the attention scores assigned
to each particle token in the input sequence, providing a
representation of where the model focuses its attention
during the decision making process[66].

Also, it reveals the relation between particle tokens.
For instance, it highlights the information extracted

from the jet constituents relevant to the clustered subjets.
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FIG. 10. Cross-attention maps for 50000 test events of top
(top plot) and QCD (bottom plot) averaged over 15 atten-
tion heads. The X-axis shows the attention score for the first
transformed 30th jet contents, while the Y-axis shows the at-
tention score for the transformed subjets.

Fig. 10 presents the cross-attention maps for a sam-
ple of 50,000 test events, showing top jet events in the
upper plot and QCD jet events in the lower plot. As

H = δij −
1
d

1 if  they  are same  (no improvedment)  
Efficient! 
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holds significance, as it allows for the independent extraction of the most relevant informa-
tion from each data set prior to their amalgamation using the cross-attention mechanism.
This characteristic makes the model proficient in analyzing multi-scale data characterized
by intricate structures.

Transformer layers 
(MHSA)

MLP

Transformer layers 
(MHCA)

Transformer layers 
(MHSA)

Transformer layers 
(MHSA)

Add() Layer

Figure 1: Structure of the transformer model used. Here, Pj1, Pj2 are the number of the
leading and second leading jet constituents while the Pm’s are the reconstructed particles,
j1, j2, and H. Also, MHSA stands for multi-heads self-attention layers, and MHCA stands
for multi-heads cross-attention layers. Finally, the Ni’s are the number of the used trans-
former encoders. The transformer layers are stacked and work sequentially, as pointed out
by the black arrow.

3 Physics example

We undertake the analysis of SM-like di-Higgs boson (hh) production at the HL-LHC with
an integrated luminosity of 3000 fb≠1 within the framework of the 2HDM. In the boosted
regime, where the di-Higgs boson is produced from an on-mass-shell heavy Higgs, H, the
final state features two fat jets, as illustrated in Fig. 2 by the two red cones therein.

Figure 2: Feynman diagram for the signal process.
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INPUT TO NETWORK : EVENT KINEMATICS 

beam direction 

ϕ

η
θ

fatjet 1 

fatjet 2

\

~125GeV mj

~125GeV mj

Kinematical inputs (3, 6)  
fatjet 1 =  
fatjet 2 =  

H candidate = 

(m1, η1, ϕ1, pT1, E1), θ1
(m2, η2, ϕ2, pT2, E2), θ2

(m12, η12, ϕ12, pT12, E12), θ12 = 0

NOTE :  
1.”5 inputs for 4  momentum" ,  
2.  H candidate momentum as  sum 
of the fat jet momentum. 
3.  add “θ” :the correlation beyond 
a subjet  



IMPROVEMENT USING CROSS ATTENTION  
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Figure 6: Left: The Receiver Operating Characteristic (ROC) curves for the four networks
for the signal BP with mH = 1 TeV. Right: 95% upper limit on the total cross section for
the process gg æ H æ hh (having factored out the SM-like h æ bb̄ decays) at the HL-
LHC with integrated Luminosity 3000 fb≠1 for di�erent ML analyses. The band for each
plot represents the upper and lower values for 5 independent training of di�erent randum
number seeds, and the middle line represents the central values. The ATLAS limits are
extracted from the latest analysis in [44] and linearly scaled to the integrated luminosity of
3000 fb≠1.

exclusively on kinematic information. Replacing the cross-attention layer with a simple
concatenation layer results in a degradation of classification performance by approximately
≥ 4%, as depicted by the green line in the plot.

In the right plot, we present the 95% upper limit on the production cross-section at
the HL-LHC for heavy scalar mass ranges between 600 ≠ 2000 GeV. The dashed black line
represents the limit for the ATLAS analysis [44], with linear scaling of the integrated lumi-
nosity to 3000 fb≠1. For lower masses, mH Æ 1 TeV, all the used transformer models show
enhanced performance over the ATLAS analysis, exhibiting over 10 times better sensitivity.
For larger masses, for which the reconstructed kinematics of the signal are faithful to its
true structure with vanishing background events, the performance of the transformer mod-
els saturates. In fact, for the limit, e.g., mH = 2 TeV, the background events can be easily
removed with a simple cut on the reconstructed distributions of the signal events, which
exhibits a clear di�erence from the background distributions. The transformer network
trained on the jet constituents only does not show a large impact with varying the heavy
scalar mass.

The network performance is subject to training uncertainty and the statistical uncer-
tainty coming from limited training and testing samples. For example, the network perfor-
mance can be influenced by the the random partitioning of the training and test data sets,
and the network performance varies when repeating the training and test steps with new
splits. We repeat the experiment for k times and report the results as bands between the
highest and lowest values. In our results, we use k = 5, and the bands represent the values
of the di�erent represented experiments.

As for optimizing the signal-to-background yield, we enforce a cut on the networks
output score to keep only 20 events of the background. With this choice, we alleviate
the statistical errors that may occur for lower background[88]. The optimized signal and
background events are used to derive the upper limit using the following formula [89]

ZA =
C

2
A

(Ns + Nb) ln (Ns + Nb)(Nb + ‡
2
b
)

N
2
b

+ (Ns + Nb)‡2
b

≠
N

2
b

‡
2
b

ln(1 + ‡
2
b
Ns

Nb(Nb + ‡
2
b
))

BD1/2
, (14)

with Ns and Nb being the number of signal and background events, respectively, and where

14

factor 5 improvement at the same acceptance. 

Cross attention  improves the  rejection  
efficiency significantly

Conversely, when the information of the jet constituents is included using the cross-
attention layer, the attention output distributions for background events are broader, and
the signal distributions are narrower. The fact that background jets lack a multi-prong
structure with broader soft radiations influences the attention output for background events,
increasing the output variations in the feature space.

Finally, we include, alongside the described kinematical information, also the rotation
angle ◊ aligning the fat jet axis to the „ direction after shifting the jet ÷ and „ to the center
of the ÷ ≠ „ plane. This information allows the network to reconstruct the full events and
access the correlation of the jet shape to the other fat jet and the beam axis. In Fig. 8,
we show the ROC curve of the network trained without the ◊ inputs (red) compared to
the ROC curve of our coss-attention model (blue). The improvement on the background
rejection is a factor of four for a signal e�ciency of 80%. Therefore, including ◊ results in a
drastically increased performance. The model with ◊ has higher e�ciency at mJ1 ≥ mh and
pT ≥

mH

2 . In short, the model can focus more on the H æ hh kinematics with ◊ inputs.
We also looked for simple correlations among ◊ and the other kinematical variables, such
as ÷J „J , but did not find any apparent ones contributing to the selection improvement.
(The correlations within the internal structures of the jet will be investigated in future
publications.)
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Figure 8: left) The ROC curve and error band of the full model using ◊ input (red) and the
model without ◊ input (blue). The ROC is obtained by using 20,000 signal and background
testing events. The error is estimated as in Fig. 6. The middle(right) plot shows the signal
e�ciency as varying mJ1(pT J1). The ratio is calculated at 80% of the signal e�ciency for
20,000 signal samples. The e�ciency (without) using ◊ is shown by blue(red) bars indicating
statistical errors. The acceptance of the full model is higher than the one without ◊ input
at mJ1 ≥ mh and pJ1 ≥ mH/2.

5 Interpretation of the transformer encoder results

In the following section, we discuss additional methods to interpret and analyze the results
of the transformer encoder with cross-attention, which performs best in Fig. 6 The inter-
pretation methods are generic and can be further applied to other networks to interpret
their results. As attention-based transformer models excel in capturing intricate spatial
relationships and global context within data, their interpretability becomes paramount.
Interpretation methods for attention-based transformers aim to elucidate the visual cues,
features, and regions that contribute significantly to the model’s predictions. Common
Interpretation Methods are

• Attention Maps: Attention maps visualize the focus of the model by highlighting
the particles in the cloud that receive higher attention. These maps provide a direct

16

Decay correlation is important 
(because QCD background is correlated)  



SUMMARY  

5

with W
(n⇤j⇥j) is the learnable linear transformation ma-

trix to retain the dimensions of the input dataset. At-
tention output is used to scale the input data set via a
skip connection as

eXi⇥j = X
i⇥j + O

i⇥j
. (8)

The transformed dataset eX signifies the importance of
each element relative to all elements within the set.
While the attention output integrates input and feature
tokens, the skip connection preserves the correlation to
the original input dataset. Moreover, it preserves the
dimensions of Xi,j .

Ultimately, the transformed dataset undergoes pro-
cessing by a global Max-Pooling layer, identifying the
particle token with the highest score. The global max
pooling operates as the following

Yj = Maxk�1
i=0

eXi⇥j
, (9)

where k is the number of the particle tokens in the
dataset. While any symmetric aggregation function
could be utilized to maintain the network’s permutation
invariance, but we found that Max-Pooling has the best
performance [53].

The output is then passed to a FC layer with ReLU
activation and an output layer with two neurons. The
final output score has the form

Ŷ = Softmax [W6 (ReLU (W5 Yj))] , (10)

which encodes the probability of the input event to be
signal or background event.

C. The role of cross-attention for collider physics

The cross-attention network is suited to study the cor-
relation between hard partons and hadrons in the events.
Considering a hard process leading N final jet, the fac-
torization picture connects the parton distribution to the
hadron distribution as follows [54],

�(pp ! a, b ! N jets) ⇠ HN

"
BaBb

NY

k=1

Jk

#
⌦ SN , (11)

where HN express the hard scattering cross section, Ba

and Bb is the beam function; J express the collinear evo-
lution of hard partons from the hard scattering, and the
soft function SN expresses the soft radiations. The for-
mula suggests that the soft hadron distributions in a jet
are conditioned by the hard process HN , the parton evo-
lutions, and the hadronization processes that connect all
partons.

Due to the correlation between parton momenta and
jet momenta, the QCD process may schematically be ex-
pressed as

Y
Ps({xk}|{Ji})Ph({Ji}) , (12)

where Ps is the hadron distributions in the jet, condi-
tioned by the jet features, and Ph is the distribution of
jets, which approximately express HN

Q
k Jk. Note that

Ps is conditioned by all jets in the events due to the ef-
fect of SN in Eq.1. Eq.1 is a much simpler approximation,
which assumes hadrons arising from a single parton.

In our network, the cross-attention score is computed
as ↵ = QK

T , which is the product of the output from the
mixer layer and the subjet information. Therefore, the
network is strongly directed to study the structure given
by Eq12. Taking the correlation between all subjets and
all constituents to take care of SN factor in our network.
Note that the splitting between Ph and Ps has ambiguity
on the choice of jet radius parameter R. If one takes
smaller R, the number of subjets increases by splitting
subjets. In Eq 11, this corresponds to the change of the
resolving scale of the parton shower. The radius R is an
ad-hoc parameter of our network. The proper choice of
the radius parameter R for our event sample and method,
which does not rely on the radius parameter R, will be
discussed in section IV.

III. TOP TAGGING DATASET

Top tagging, namely the identification of jets originat-
ing from hadronically decaying top quarks, is crucial in
searches for new physics at the LHC. To assess the ef-
fectiveness of the proposed network, we utilize the top
tagging dataset [34]. Jets in this dataset are generated
in the centre of mass energy

p
s = 14 TeV using Pythia8

[55]. Delphes [56] is used for fast detector simulation.
The simulation does not account for multiple parton in-
teractions or pileup e↵ects. The jets are clustered from
Delphes E-Flow objects using the Anti-kt algorithm with
a cone of radius R = 0.8. Jets with transverse momen-
tum pT 2 [550, 650] GeV and pseudo rapidity |⌘| < 2.

are considered. For top events, the event should contain
the jets that match the top quark, namely, a jet within
�R = 0.8 from a hadronically decaying top quark and
also all the three quarks from the top decay are within
�R = 0.8 from the jet axis. The QCD dijet process is
considered as the background.

The data set contains 1 million tt̄ events and 1 mil-
lion QCD dijet events. We adhere to the o�cial split for
training 1.2M event, validation 400k event, and testing
400k event. The data sample has been widely used in the
previous literature, making it easy to compare the net-
work performance with the others. One drawback of us-
ing this sample is the e↵ective sample imbalance around
the top mass region; the top sample peaks around 170
GeV while the QCD sample peaks near zero; in other
words, the overlap between the top sample and the QCD
sample is poor, making it di�cult to compare the fine
di↵erence among the high-performance networks.

Up to 200 constituent particles (hadrons) are re-
tained for each jet in the dataset, with the 4-momenta
(px, py, pz, E) of each particle. From this dataset, we

Hard scattering Jet function Parton shower 

Something soft 

Local information via (sub)jets　K

Cross attention   for P( constituents |  (sub)jets~partons) 

A = QKTconstituent  
information 

LHC process 
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Mixer+ Subjet  network  

• Small, first, and high perfomance (you can test it on your 
computer!)  

• Can apply repeatedly  without losing information.  

• you can stack all information (vertex, track, etc )


