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How to teach AI about jets?



Introduction
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Create a neural network model that aims to 
accomplish 2 tasks:
● Classify jets: learns the difference in 

radiation between jet types
● Generate jets: implicitly learn the likelihood of 

jets for different partons



Encoding jet information
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Point-Edge Transformer (PET)
● Combine local information with graphs
● Learn global information with Transformers

+



Training
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JetClass dataset used for training
● 100M jets
● 10 different jet categories, AK8 jets simulated in pp collisions 

with Madgraph + Pythia8 with CMS Delphes detector 
simulation

Use the pre-trained model as the starting point and fine-tune using 
different datasets



Evaluation
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2 different jet categories, AK8 jets simulated in pp collisions with 
Madgraph + Pythia8 with ATLAS Delphes detector simulation 

Better than all non-fine-tuned models 
and similar to PartT performance

Evaluation datasets: 1



Evaluation
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2 different jet categories, AK4 jets simulated in pp collisions with 
Madgraph + Pythia8 with CMS Delphes detector simulation

Better than all non-fine-tuned 
models and similar to PartT 
performance

Evaluation datasets: 2



Evaluation
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Evaluation datasets: 2

Faster training and 
better convergence



Evaluation
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2 different jet categories, AK5 jets simulated in pp collisions with 
Pythia6 with Geant4 Simulation + CMS Particle flow reconstruction

Evaluation datasets: 3



Evaluation
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2 different jet categories, AK10 jets simulated in ep collisions with 
Rapgap with Geant3 Simulation + H1 Particle flow reconstruction

Evaluation datasets: 4



Jet Generation
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Evaluation datasets: 6

Great generation 
quality across 
multiple metrics



“Quick Application 
Highlight
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FastSim to FullSim
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Evaluation datasets: 7

OmniLearn is trained on cheap 
Delphes simulations. Can we 
fine-tune to Run 2 ATLAS Full 
simulation + Reconstruction?
● Matches SOTA with 10% of 

the data
● Improves on SOTA if all 

events are used



Unfolding
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What we measure What we want



OmniFold

16Source: Andreassen et al. PRL 124, 
182001 (2020)

2-step iterative process
▰ Step 1: Reweight simulations to 

look like data
▰ Step 2: Convert learned weights 

into functions of particle level 
objects



Unfolding
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Evaluation datasets: 8

Unbinned Unfolding using the OmniFold 
workflow. More precise than traditional 
unfolding and more efficient than previous 
ML models



Anomaly Detection
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Evaluation datasets: 9

Bump-hunting using ML:
● Use the background in the sideband 

to estimate the background in the 
signal  region

● Compare the estimated background 
with the data



Anomaly Detection
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Evaluation datasets: 9

Bump-hunting using ML:

● Generative Model
● Classifier



LHCO dataset
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LHCO R&D dataset
● Resonant dijet final 

state: A->B(qq)C(qq) 
with mA, mB , mC = 3.5, 
0.5, 0.1 TeV

Evaluation datasets: 9



Anomaly Detection
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Evaluation datasets: 9

● Generate the full dijet system: 2*279*3 
= 1674 numbers to generate

● Classify data from background
SIC = Significance Improvement Curve 
(TPR/sqrt(FPR) vs TPR) “By how much can I 
improve the significance of a particular 
signal given an initial significance.”



Anomaly Detection
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Evaluation datasets: 9

● Generate the full dijet system: 2*279*3 
= 1674 numbers to generate

● Classify data from background
Previous results were limited by the amount 
of data in the SR: Only sensitive to NP when 
S/B > 3% ~ 4𝜎
OmniLearn founds the NP with S/B = 0.7% 
~ 2𝜎



Conclusion
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● OmniLearn: learn a general representation of jets
● Evaluate the generalization capabilities of OmniLearn across 9 different 

downstream datasets
● Evaluate the performance on jet tagging, jet generation, unfolding, and 

anomaly detection
● OmniLearn either improves upon SOTA or/and converges quicker than models 

trained from scratch
● Magnify the statistical power of the data: Not only Big Data benefits from AI
● Try it out yourself: https://github.com/ViniciusMikuni/OmniLearn/ and check 

out the paper: arXiv:2404.16091

https://github.com/ViniciusMikuni/OmniLearn/
https://arxiv.org/abs/2404.16091
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THANKS!
Any questions?



Backup
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ATLAS Loss Curves
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OmniLearn for reweighting
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OmniLearn for Unfolding
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PET
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Train one model that learns to classify and generate jets
● Combine both local and global information using local edges 

and a transformer: Point-Edge Transformer

More details at: https://arxiv.org/abs/2404.16091

https://arxiv.org/abs/2404.16091


Loss function
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Straightforward loss function:
● Cross entropy for each class
● Perturbed data prediction from the diffusion loss
● Classification over perturbed inputs: data augmentation!

More details at: https://arxiv.org/abs/2404.16091

https://arxiv.org/abs/2404.16091


Input Dropout
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Not all datasets contain the same information:
● Instead of training different models for each set of inputs we aim 

to have a model that works well in both cases
● Feature Dropout: With fixed probability, set some of the input 

features to 0 during training

More details at: https://arxiv.org/abs/2404.16091
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