

OmniLearn: Facilitating All Jet Physics Tasks

Vinicius M. Mikuni

How to teach AI about jets?

Create a neural network model that aims to accomplish 2 tasks:

- Classify jets: learns the difference in radiation between jet types
 - Generate jets: implicitly learn the likelihood of jets for different partons

Encoding jet information

Point-Edge Transformer (PET)

- Combine local information with graphs
- Learn global information with Transformers

JetClass dataset used for training

• 100M jets

 10 different jet categories, AK8 jets simulated in pp collisions with Madgraph + Pythia8 with CMS Delphes detector simulation

Use the pre-trained model as the starting point and fine-tune using different datasets

2 different jet categories, AK8 jets simulated in pp collisions with Madgraph + Pythia8 with ATLAS Delphes detector simulation

	Acc	AUC	$1/\epsilon_B$	
			$\epsilon_S=0.5$	$\epsilon_S=0.3$
ResNeXt-50 [38]	0.936	0.9837	302 ± 5	1147 ± 58
P-CNN [38]	0.930	0.9803	201 ± 4	759 ± 24
PFN [35]	-	0.9819	247 ± 3	888 ± 17
ParticleNet [38]	0.940	0.9858	397 ± 7	1615 ± 93
JEDI-net [37]	0.9300	0.9807		774.6
PCT [41]	0.940	0.9855	392 ± 11	1559 ± 98
LGN [79]	0.929	0.964	-	435 ± 95
rPCN [39]	-	0.9845	364 ± 9	1642 ± 93
LorentzNet [10]	0.942	0.9868	498 ± 18	2195 ± 173
PELICAN [80]	0.9425	0.9869	-	2289 ± 204
ParT [42]	0.940	0.9858	413 ± 16	1602 ± 81
ParT-f.t. [42]	0.944	0.9877	691 ± 15	$\textbf{2766} \pm \textbf{130}$
Mixer(HDBSCAN) [81]	-	0.9859	416	-
PET Classifier	0.938	0.9848	340 ± 12	1318 ± 39
OmniLearn	0.942	0.9872	568 ± 9	2647 ± 192

Better than all non-fine-tuned models and similar to PartT performance

2 different jet categories, **AK4 jets** simulated in pp collisions with **Madgraph +** Pythia8 with CMS Delphes detector simulation

	Acc	AUC	$1/\epsilon_B$		
			$\epsilon_S = 0.5$	$\epsilon_S = 0.3$	
P-CNN [38]	0.827	0.9002	34.7	91.0	
PFN [35]	-	0.9005	$34.7{\pm}0.4$	-	
ParticleNet [38]	0.840	0.9116	$39.8{\pm}0.2$	$98.6{\pm}1.3$	
rPCN [39]	-	0.9081	38.6 ± 0.5	-	
ParT [42]	0.840	0.9121	41.3 ± 0.3	101.2 ± 1.1	
ParT-f.t. [42]	0.843	0.9151	42.4 ± 0.2	$\textbf{107.9}\pm\textbf{0.5}$	
PET classifier	0.837	0.9110	$39.92{\pm}0.1$	104.9 ± 1.5	
OmniLearn	0.844	0.9159	$\textbf{43.7}{\pm}\textbf{0.3}$	$\textbf{107.7} \pm \textbf{1.5}$	

Better than all non-fine-tuned models and similar to PartT performance

Faster training and better convergence

9

2 different jet categories, AK5 jets simulated in pp collisions with Pythia6 with Geant4 Simulation + CMS Particle flow reconstruction

2 different jet categories, AK10 jets simulated in ep collisions with Rapgap with Geant3 Simulation + H1 Particle flow reconstruction

Jet Generation

Jet class	Model	W_1^{PM} (×10 ⁻³)	$W_1^P (\times 10^{-3})$	W_1^{PEFP} (×10 ⁻⁵)	FPND	$\operatorname{Cov}\uparrow$	MMD
	FPCD [52]	$\textbf{0.36} \pm \textbf{0.08}$	$\textbf{0.34} \pm \textbf{0.09}$	0.47 ± 0.13	0.07	0.55	0.03
Gluon	FPCD 1 [52]	0.65 ± 0.11	$\textbf{0.34} \pm \textbf{0.06}$	0.60 ± 0.09	0.11	0.55	0.03
	MP-GAN [44]	0.69 ± 0.07	1.8 ± 0.2	0.9 ± 0.6	0.20	0.54	0.037
	EPIC-GAN [45]	$\textbf{0.3} \pm \textbf{0.1}$	1.6 ± 0.2	0.4 ± 0.2	1.01 ± 0.07	-	-
	PET generator	0.42 ± 0.10	$\textbf{0.36} \pm \textbf{0.08}$	$\textbf{0.35}\pm\textbf{0.08}$	0.04	0.55	0.03
	PET generator (Ideal)	$\textbf{0.36} \pm \textbf{0.08}$	$\textbf{0.34} \pm \textbf{0.09}$	0.47 ± 0.13	0.07	0.55	0.03
	OmniLearn	$\textbf{0.38} \pm \textbf{0.08}$	$\textbf{0.33} \pm \textbf{0.07}$	$\textbf{0.33}\pm\textbf{0.09}$	0.02	0.55	0.03
	OmniLearn (Ideal)	$\textbf{0.33} \pm \textbf{0.06}$	$\textbf{0.29} \pm \textbf{0.08}$	$\textbf{0.30} \pm \textbf{0.07}$	0.02	0.55	0.03
	FPCD [52]	0.52 ± 0.07	$\textbf{0.27}\pm\textbf{0.06}$	0.38 ± 0.11	0.08	0.49	0.02
Light Quark	FPCD 1 [52]	0.59 ± 0.08	0.36 ± 0.08	0.50 ± 0.08	0.09	0.48	0.02
	MP-GAN [44]	0.6 ± 0.2	4.9 ± 0.5	0.7 ± 0.4	0.35	0.50	0.026
	EPIC-GAN [45]	0.5 ± 0.1	4.0 ± 0.4	0.8 ± 0.4	0.43 ± 0.03	-	-
	PET generator	0.39 ± 0.12	0.35 ± 0.06	$\textbf{0.24} \pm \textbf{0.10}$	0.03	0.54	0.02
	PET generator (Ideal)	0.31 ± 0.08	0.38 ± 0.10	$\textbf{0.23} \pm \textbf{0.07}$	0.03	0.53	0.02
	OMNILEARN	$\textbf{0.24} \pm \textbf{0.03}$	$\textbf{0.32} \pm \textbf{0.07}$	$\textbf{0.24} \pm \textbf{0.08}$	0.02	0.54	0.02
	OmniLearn (Ideal)	0.31 ± 0.08	$\textbf{0.30} \pm \textbf{0.09}$	$\textbf{0.26} \pm \textbf{0.08}$	0.01	0.54	0.02
	FPCD [52]	0.51 ± 0.07	0.41 ± 0.12	1.25 ± 0.19	0.17	0.58	0.05
Top Quark	FPCD 1 [52]	1.22 ± 0.09	0.46 ± 0.10	2.66 ± 0.26	0.56	0.57	0.05
	MP-GAN [44]	0.6 ± 0.2	2.3 ± 0.3	2 ± 1	0.37	0.57	0.071
	EPIC-GAN [45]	0.5 ± 0.1	2.1 ± 0.1	1.7 ± 0.3	0.31 ± 0.037	-	-
	PET generator	0.44 ± 0.03	$\textbf{0.29} \pm \textbf{0.07}$	$\textbf{1.09} \pm \textbf{0.23}$	0.07	0.58	0.05
	PET generator (Ideal)	$\textbf{0.41} \pm \textbf{0.07}$	$\textbf{0.34} \pm \textbf{0.08}$	1.22 ± 0.23	0.07	0.58	0.05
	OMNILEARN	0.43 ± 0.06	$\textbf{0.30} \pm \textbf{0.07}$	1.31 ± 0.18	0.04	0.58	0.05
	OmniLearn (Ideal)	$\textbf{0.36} \pm \textbf{0.05}$	0.41 ± 0.08	$\textbf{1.02} \pm \textbf{0.20}$	0.03	0.58	0.05
	FPCD [52]	0.26 ± 0.03	0.39 ± 0.08	0.15 ± 0.02	-	0.56	0.02
W Boson	FPCD 1 [52]	0.94 ± 0.06	0.42 ± 0.09	0.35 ± 0.03	-	0.56	0.02
	PET generator	$\textbf{0.17} \pm \textbf{0.04}$	$\textbf{0.26} \pm \textbf{0.05}$	$\textbf{0.11} \pm \textbf{0.02}$	-	0.56	0.02
	PET generator (Ideal)	0.15 ± 0.02	$\textbf{0.31} \pm \textbf{0.07}$	0.12 ± 0.03	-	0.57	0.02
	OmniLearn	$\textbf{0.19} \pm \textbf{0.03}$	$\textbf{0.27} \pm \textbf{0.07}$	$\textbf{0.10} \pm \textbf{0.02}$	-	0.57	0.02
	OmniLearn (Ideal)	$\textbf{0.16} \pm \textbf{0.06}$	$\textbf{0.28} \pm \textbf{0.04}$	$\textbf{0.10} \pm \textbf{0.02}$	-	0.57	0.02
	FPCD [52]	$\textbf{0.21}\pm\textbf{0.04}$	0.40 ± 0.13	0.18 ± 0.03	-	0.56	0.02
Z Boson	FPCD 1 [52]	0.99 ± 0.05	0.35 ± 0.06	0.49 ± 0.03	-	0.56	0.02
	PET generator	0.22 ± 0.04	$\textbf{0.32} \pm \textbf{0.07}$	0.20 ± 0.04	-	0.57	0.02
	PET generator (Ideal)	$\textbf{0.18} \pm \textbf{0.10}$	$\textbf{0.30} \pm \textbf{0.08}$	$\textbf{0.14} \pm \textbf{0.02}$	-	0.56	0.02
	OmniLearn	$\textbf{0.19} \pm \textbf{0.07}$	$\textbf{0.32} \pm \textbf{0.09}$	0.12 ± 0.03	-	0.57	0.02
	OmniLearn (Ideal)	0.22 ± 0.05	0.27 ± 0.06	0.13 ± 0.02	-	0.57	0.02

BERKELEY LAB Evaluation datasets: 6

12

Guick Application Highlight

Evaluation datasets: 7

- **OmniLearn** is trained on cheap Delphes simulations. Can we fine-tune to Run 2 **ATLAS** Full simulation + Reconstruction?
- Matches SOTA with **10%** of the data
- Improves on SOTA if all events are used

	AUC	Acc	$1/\epsilon_B$	
			$\epsilon_S = 0.5$	$\epsilon_S = 0.8$
ResNet 50	0.885	0.803	21.4	5.13
EFN	0.901	0.819	26.6	6.12
hlDNN	0.938	0.863	51.5	10.5
DNN	0.942	0.868	67.7	12.0
PFN	0.954	0.882	108.0	15.9
ParticleNet	0.961	0.894	153.7	20.4
PET classifier (4M)	0.959	0.890	146.5	19.4
OmniLearn (4M)	0.961	0.894	172.1	20.8
PET classifier (40M)	0.964	0.898	201.4	23.6
OmniLearn (40M)	0.965	0.899	207.30	24.10

Unfolding

What we want

100000000

OmniFold

$\begin{array}{c|c} \textbf{Step 1:} & \textbf{Step 2:} \\ \textbf{Reweight Sim. to Data} & \textbf{Reweight Gen.} \\ \nu_{n-1} \xrightarrow{\text{Data}} \omega_n & \nu_{n-1} \xrightarrow{\omega_n} \nu_n \\ \hline \textbf{Simulation} & \textbf{Pull Weights} & \textbf{Generation} \\ \hline \textbf{Push Weights} & \textbf{Generation} \\ \hline \textbf{U} & \textbf{U} & \textbf{U} & \textbf{U} \\ \hline \textbf{U} & \textbf{U} & \textbf{U} \\ \hline \textbf{U} & \textbf{U} & \textbf{U} \\ \hline \textbf{U}$

2-step iterative process

- Step 1: Reweight simulations to look like data
- Step 2: Convert learned weights into functions of particle level objects

Unbinned Unfolding using the OmniFold workflow. More **precise** than traditional unfolding and more **efficient** than previous ML models

Metric	MultiFold	UniFold	IBU			
				DeepSets	PET classifier	OmniLearn
Jet mass	3.80	8.82	9.31	2.77	$2.8{\pm}0.9$	$2.6{\pm}0.8$
Ν	0.89	1.46	1.51	0.33	$0.50{\pm}0.15$	$0.34{\pm}0.1$
Jet Width	0.09	0.15	0.11	0.10	$0.09{\pm}0.02$	$0.07{\pm}0.01$
$\log ho$	0.37	0.59	0.71	0.35	$0.23{\pm}0.07$	$0.14{\pm}0.03$
$ au_{21}$	0.26	1.11	1.10	0.53	$0.13{\pm}0.03$	$0.05{\pm}0.01$
z_g	0.15	0.59	0.37	0.68	$0.19{\pm}0.03$	$0.21{\pm}0.04$

Bump-hunting using ML:

- Use the background in the sideband to estimate the background in the signal region
- Compare the estimated background with the data

Bump-hunting using ML: Generative Model Classifier

LHCO dataset

LHCO R&D dataset

Resonant **dijet** final state: A->B(qq)C(qq) with m_A, m_B , m_C = 3.5, 0.5, 0.1 TeV

Anomaly Detection

Generate the full dijet system: 2*279*3

1674 numbers to generate

Classify data from background

SIC = Significance Improvement Curve

(TPR/sqrt(FPR) vs TPR) "By how much can I improve the significance of a particular signal given an initial significance."

Anomaly Detection

Generate the full dijet system: 2*279*3 = **1674** numbers to generate **Classify** data from background Previous results were limited by the amount of data in the SR: Only sensitive to NP when S/B > 3% ~ 4₀ **OmniLearn** founds the NP with **S/B = 0.7%** ~ 20

- **OmniLearn**: learn a general representation of jets
- Evaluate the generalization capabilities of OmniLearn across 9 different downstream datasets
- Evaluate the performance on jet tagging, jet generation, unfolding, and anomaly detection
- OmniLearn either improves upon SOTA or/and converges quicker than models trained from scratch
- Magnify the statistical power of the data: Not only Big Data benefits from AI
- Try it out yourself: <u>https://github.com/ViniciusMikuni/OmniLearn/</u> and check out the paper: <u>arXiv:2404.16091</u>

THANKS!

Any questions?

Backup

ATLAS Loss Curves

OmniLearn for reweighting

OmniLearn for Unfolding

28

PET

Train one model that learns to classify and generate jets

• Combine both local and global information using local edges and a transformer: **P**oint-**E**dge **T**ransformer

$$egin{split} \mathcal{L} &= \mathcal{L}_{ ext{class}} + \mathcal{L}_{ ext{gen}} + \mathcal{L}_{ ext{class smear}} \ &= ext{CE}(y, y_{ ext{pred}}) + \left\| \mathbf{v} - \mathbf{v}_{ ext{pred}}
ight\|^2 + lpha^2 ext{CE}(y, \hat{y}_{ ext{pred}}) \end{split}$$

Straightforward loss function:

- Cross entropy for each class
- Perturbed data prediction from the **diffusion loss**
- Classification over perturbed inputs: **data augmentation**!

Not all datasets contain the same information:

- Instead of training different models for each set of inputs we aim to have a model that works well in both cases
- Feature Dropout: With fixed probability, set some of the input features to 0 during training

$$f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}$$

$$f_{5}, f_{6}, f_{7}, f_{8}$$

$$p = 0.9$$

$$0,0,0,0$$

$$p = 0.1$$

More details at: https://arxiv.org/abs/2404.16091