

nergy-Weighted Observable Correlations (EWOCs)

Energy Correlators Beyond Angles:

Energy-Weighted Observable Correlations (EWOCs)

Samuel Alipour-fard

with Wouter Waalewijn

samuelaf@mit.edu

Mass Extraction

The Mass EWOC

 $e^+e^-
ightarrow$ hadrons

Boost 2024

June 30th, 2024

Overview

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

 $e^+e^-
ightarrow$ hadrons

The Mass Energy-Weighted Observable Correlation (EWOC)

Energy Correlators and Mass Extraction

Motivation:

Calculation: The Mass EWOC in e^+e^- to hadrons

Leeeee

What is the EEC?

The Energy-Energy Correlator (EEC) (is a function of θ)

(Roughly) An answer to the question:

How much of the energy in an event/jet is separated by an angle θ ?

Mass Extraction

The Mass EWOC

What is the EEC?

The Energy-Energy Correlator (EEC) (is a function of θ)

(Roughly) An answer to the question:

How much of the energy in an event/jet is separated by an angle θ ?

$$\frac{\mathrm{d}\Sigma(\theta)}{\mathrm{d}\theta} = \frac{1}{\sigma} \oint \mathrm{d}\sigma \sum_{\substack{\text{particles}\\i,j}} z_i \, z_j \, \delta \left(\theta - \theta_{ij}\right)$$
* More common: $z := (1 - \cos \theta)/2$

z_i is an energy or p_T fraction;

• θ_{ij} is an angular measure (opening angle, ΔR).

Mass Extraction

The Mass EWOC

The EEC: What makes it special?

The Energy-Energy Correlator (EEC) has become a standard tool in QCD phenomenology.

Experimentally practical/physically intuitive definition;

Soft physics is suppressed and more easily understood.

Mass Extraction

The Mass EWOC

The EEC: What makes it special?

The **EEC** addresses several important goals of QCD phenomenology, including:

• Measurements of α_s ;

Observable Correlations (EWOCs) Mass Extraction

ATLAS: [1508.01579] [1707.02562]

[CMS PAS SMP-22-015]

HERA: [2008.00271]

LEP+:[1804.09146]

 $e^+e^- \rightarrow hadrons$

The Mass EWOC

The EEC: What makes it special?

The EEC: Extraction of Mass Scales

In this talk, look for m_W instead (proof-of-concept):

Top mass extraction: W mass extraction:

Two-pronged *W* decays play better with the **pair-wise** EEC:

Energy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

The EEC: Mass Scales from Angles

The EEC: Mass Scales and Subjets

To extract energy-weighted mass correlations in

W boson decays, we need to go beyond particle-level:

Which **collective** degrees of freedom reveal the **two-pronged** *W* decay shape?

Mass Extraction The Mass EWOC $e^+e^- \rightarrow hadrons$

The EEC: Mass Scales and Subjets

To extract energy-weighted mass correlations in

W boson decays, we need to go beyond particle-level:

Which **collective** degrees of freedom reveal the **two-pronged** *W* decay shape?

Energy-Weighted Observable Correlations (EWOCs) Mass Extraction The Mass EWOC $e^+e^- \rightarrow hadrons$

Introducing: The Mass EWOC

The EEC and the Mass EWOC

Using subjets and directly probing mass correlations improves accuracy and precision!

11

The Mass EWOC: Tuning Subjet Radius

- Larger subjets less sensitive to hadronization;
- Larger subjets have **more** underlying event at small *m*.

The Mass EWOC: Comparison to Jet Mass

The **EWOC** peak remains at m_W even with underlying event (multi-parton interactions/MPI)

The Mass EWOC in $e^+e^- ightarrow$ hadrons

LO/Collinear Limit: (anti-)quark jets

- Different subjets
- Same subjet
- Different jets

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

 $e^+e^-
ightarrow$ hadrons

14

The Mass EWOC in $e^+e^- \rightarrow$ hadrons

The Mass EWOC in $e^+e^- \rightarrow$ hadrons

phase space + energy weighting + QCD splitting function:

 $\frac{\mathrm{d}\Sigma}{\mathrm{d}m}\sim \frac{a_{s}\,C_{F}}{m}\times \left(\begin{array}{c} \text{height of green region} \ \text{at fixed} \ m \right)$

The Mass EWOC in $e^+e^- \rightarrow$ hadrons

17

$e^+e^- ightarrow$ hadrons: Pythia vs. LO

Mass Extraction

The Mass EWOC

 $e^+e^- \rightarrow hadrons$

▶ LO features at the correct scales: $\frac{\sqrt{s} R_{jet}}{4}$ and $\frac{\sqrt{s} r_{sub}}{4}$;

Square roots in LO result \implies cusps at $\sqrt{s} r_{sub}/4$;

▶ Higher (log.) accuracy needed for accurate comparison.

EWOC Review

What is the EEC? **CIN QCD pheno**

The Energy-Energy Correlator (EEC) (is a function of θ)

(Roughly) An answer to the question:

How much of the energy in an event/jet is separated by an angle θ ?

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

EEC Definition

The Energy-Energy Correlator (EEC) <in QCD pheno

$$rac{{
m d}\Sigma}{{
m d} heta} = \left\langle \sum_{\substack{ {f particles}\ i,j}} rac{E_i\,E_j}{Q^2}\,\delta\left(heta- heta_{ij}
ight)
ight
angle {
m many events}$$

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

EEC Definition

The Energy-Energy Correlator (EEC) <i n QCD pheno

$$\frac{\mathsf{d}\Sigma(\chi)}{\mathsf{d}\chi} = \left\langle \sum_{\substack{\mathsf{particles}\\i,j}} \frac{E_i E_j}{Q^2} \, \delta\left(\chi - \frac{1 - \cos\theta_{ij}}{2}\right) \right\rangle$$
many events

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

EEC Definition

The Energy-Energy Correlator (EEC) <i n QCD pheno

$$rac{{
m d}\Sigma(\chi)}{{
m d}\chi} = rac{1}{\sigma} \sum_{m{particles}\ i,j} {
m d}\sigma \sum_{\substack{{
m particles}\ i,j}} z_i\, z_j\, \delta\left(\chi - rac{1-\cos heta_{ij}}{2}
ight)$$

Energy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

Generic Pairwise EWOCs

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

```
e^+e^- 
ightarrow hadrons
```

Definition: Mass EWOC

The mass Energy-Weighted Observable Correlator ($\ensuremath{\mathsf{EWOC}}\xspace)$ is a distribution of the form

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}m}(m, R_{\text{jet}}, r_{\text{sub}}) \stackrel{\Delta}{=} \\ \int \frac{\mathrm{d}\sigma}{\sigma} \sum_{J \in \text{Jets}} \sum_{s_1, s_2 \in \text{Subjets}} z_1 z_2 \,\delta\left(m - |(p_{s_1} + p_{s_2})^2|\right).$$

Back to the pheno

Generic Pairwise EWOCs

• Let $\mathcal{O}(\cdot, \cdot)$ be a pairwise observable on pairs of pseudo-jets;

Definition: Pairwise EWOC

A pairwise Energy-Weighted Observable Correlator (EWOC) is a distribution of the form

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\chi}(\chi, R_{\mathrm{jet}}, r_{\mathrm{sub}}; \mathcal{O}] \stackrel{\Delta}{=} \int \frac{\mathrm{d}\sigma}{\sigma_0} \sum_{J \in \mathrm{Jets}} \sum_{s_1, s_2 \in \mathrm{Subjets}} z_1^n z_2^m \,\delta\left(\chi - \mathcal{O}(s_1, s_2)\right).$$

Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

```
e^+e^- 
ightarrow hadrons
```

Generic Pairwise EWOCs

- Let $\mathcal{O}(\cdot, \cdot)$ be a pairwise observable on pairs of pseudo-jets;
- Additional dependence on energy weights and (sub)jet definition (jet algorithm and recombination scheme).

Definition: Pairwise EWOC

A pairwise Energy-Weighted Observable Correlator (EWOC) is a distribution of the form

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\chi}(\chi, R_{\rm jet}, r_{\rm sub}; \mathcal{O}] \stackrel{\Delta}{=} \int \frac{\mathrm{d}\sigma}{\sigma_0} \sum_{J \in Jets} \sum_{s_1, s_2 \in {\rm Subjets}} z_1^n z_2^m \,\delta\left(\chi - \mathcal{O}(s_1, s_2)\right).$$

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

```
e^+e^- 
ightarrow hadrons
```

Back to the pheno

Now IRC Safe: Energy Weights

Particle-Level: energy fractions with n ≠ 1 are collinear unsafe even for the EEC (let alone EWOCs!):

$$z_1^n + z_2^n \neq (z_1 + z_2)^n$$

$$\sum_{\substack{\text{particles } (i,j) \\ \text{after splitting}}} z_i^n z_j^m \delta\left(\theta - \theta_{ij}\right) \quad \neq \sum_{\substack{\text{particles } (i,j) \\ \text{before splitting}}} z_i^n z_j^m \delta\left(\theta - \theta_{ij}\right)$$

Collinear safe subjet algorithms yield collinear safe subjets => collinear safe sums!

» cf Lund EEC to remove underyling event at RHIC by [2312.12527]

Energy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

Collinear Unsafety: Safe at LO

- Collinear unsafety of particle-level EWOCs only manifests with three or more final-state particles.
- Misleadingly, particle-level EWOCs (within jets) can be computed at LO.

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

Angularity EWOCs

Similar to Mass EWOC ($\varsigma = 2$), now with a tunable parameter

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

Alternatives to Subjets: Lund EEC

• Back to the subjets

Lund EEC: [2312.12527]

- EEC based on Lund declusterings;
- Collinear safe → energy weighting now possible for suppression of underlying event (cf Subjets)
- Similar to subjets which satisfy certain criteria:
 - Undo the last-clustering step to generate two subjets, j_1 and $j_2.$
 - Calculate their relative k_t defined as $k_t = \min(x_1, x_2)\Delta R_{12}$, where the concrete definitions of x (an energy-like variable) and ΔR_{12} (an angular-like variable) depend on the collision system. For e^+e^- , $x_i = E_i$ and $\Delta = \theta_{ij}$, while in pp in $x_i = p_{ti}$ and $\Delta R_{ij} = \sqrt{(y_i y_j)^2 + (\phi_i \phi_j)^2}$.
 - Only when $k_t > k_{t,\text{cut}}$, record the softest branch, so-called primary Lund declustering.
 - Repeat from step 1 following only the hardest subjet, i.e., the primary branch.
 - Once there is nothing left to decluster, calculate the EEC as

$$\frac{\mathrm{d}\Sigma^{(n)}}{\mathrm{d}\chi} = \frac{1}{\sigma} \sum_{\{i,j\}\in\mathrm{declust}} \int_{0}^{1} \mathrm{d}z \frac{\mathrm{d}\sigma}{\mathrm{d}\theta_{ij}\mathrm{d}z} z^{n} (1-z)^{n} \delta\left(\chi - \frac{\theta_{ij}}{R}\right) \Theta(k_{t} > k_{t,\mathrm{cut}}), \quad (5.1)$$

where the sum runs over all primary Lund declusterings.

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

▲ Back to the subjets

FASTEEC: [2406.08577]

From "Energy Correlators & Beyond," Waalewijn, 2024 MITP Workshop

Recluster jets with C/A

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

▲ Back to the subjets

FASTEEC: [2406.08577]

From "Energy Correlators & Beyond," Waalewijn, 2024 MITP Workshop

Recluster jets with C/A

- Take first split, separation ΔR

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

▲ Back to the subjets

FASTEEC: [2406.08577]

From "Energy Correlators & Beyond," Waalewijn, 2024 MITP Workshop

- Recluster jets with C/A
- Take first split, separation ΔR
- Decluster until subjets with radius $r=\Delta R/\sqrt{f}$

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

▲ Back to the subjets

FASTEEC: [2406.08577]

From "Energy Correlators & Beyond," Waalewijn, 2024 MITP Workshop

- Recluster jets with C/A
- Take first split, separation ΔR
- Decluster until subjets with radius $r = \Delta R / \sqrt{f}$
- Obtain correlator for terms involving both sides of the split:

$$\sum_{i} z_i \sum_{j} z_j \,\delta(R_L - R_{ij})$$

Energy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

▲ Back to the subjets

FASTEEC: [2406.08577]

From "Energy Correlators & Beyond," Waalewijn, 2024 MITP Workshop

- Recluster jets with C/A
- Take first split, separation ΔR
- Decluster until subjets with radius $r = \Delta R / \sqrt{f}$
- Obtain correlator for terms involving both sides of the split:

$$\sum_{i} z_i \sum_{j} z_j \,\delta(R_L - R_{ij})$$

• Recurse on each branch to get correlations at smaller scales.

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

Subjet Algorithms in pp collisions (Back to the Mass EV/OC)

Anti-k_t

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

C/A

The Mass EWOC

 $e^+e^-
ightarrow$ hadrons

k+

- Very weak algorithm dependence, greatest at large r_{sub};
- Even at large r_{sub} , k_t and C/A subjets behave nearly identically.

Recombination Schemes in e^+e^- collisions

However, strong dependence on recombination scheme:

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

MPI in proton-proton collisions

inergy-Weighted Observable Correlations (EWOCs)

Mass Extraction The Mass EWOC $e^+e^- \rightarrow$ hadrons

Resummation

Resummation: Hard Function

The hard function H_i is, roughly, the number density (per $x = E_{jet}/\sqrt{s}$) of jets of flavor *i* emerging from the hard process.

Resummation: Jet Function

The jet function $J_i^{\mathcal{O}}$ is, roughly, the contribution to the \mathcal{O} -EWOC from a jet of partonic flavor *i*.

Mass Extraction

The Mass EWOC

Resummation: Jet Function at LL

i = dMass Extraction The Mass EWOC $e^+e^- \rightarrow hadrons$

In the collinear limit, the jet function is dominated by correlations between splittings near the end of the jet's history;

We can then factorize the jet function even further.

Jet Function: Fragmentation

i ≠ a

Mass Extraction Parton-to-parton fragmentation The Mass EWOC $e^+e^- \rightarrow hadrons$ Parton iParton fSemi-inclusive fragmenting jet function: [1606.07063]

followed by parton-to-subjet fragmentation

Semi-inclusive jet function: [1606.06732]

Jet Function: Fragmentation

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

 $e^+e^-
ightarrow$ hadrons

Semi-inclusive fragmenting jet function: [1606.07063]

$$F_{f\leftarrow i}(z=rac{E_f}{E_i};\ R_{ ext{jet}}\leftarrow R_{ ext{jet}})=\delta\left(1-z
ight)\,\delta_{ij}$$

Jet Function: Fragmentation

nergy-Weighted Observable Correlations (EWOCs)

Mass Extraction

The Mass EWOC

