Unbiased quantification of jet energy loss

João M. Silva (LIP/IST)

In collaboration with: Liliana Apolinário (LIP/IST) Lénea Luís (LIP/IST) Guilherme Milhano (LIP/IST)

arXiv:2408.XXXXX

BOOST 2024

Genova, August 2024

Established by the European Commission

1

Quark-gluon plasma

- Created in ultra-relativistic heavy-ion collisions
 (HICs), e.g., Pb-Pb or Au-Au, conducted at the LHC and at RHIC
- ◆ Signaled by an abrupt increase in energy and particle densities about ~ 1 fm/c (10⁻²⁴ s) after the collision, with energy densities well above those inside typical hadrons (~ 0.5 GeV/fm³)
- Its collective properties are lost on a timescale of ~ 10
 fm/c due to hydrodynamical expansion.

Hot and dense ~perfect liquid ($\eta/s \sim 1/4\pi$) of deconfined quarks and gluons!

Busza et al, arXiv:1802.04801

Probing the QGP with jets

jets - collimated energetic QCD cascades

Probing the QGP with jets

Reviews: Mehtar-Tani et al, arXiv:1302.2579, Qin et al, arXiv:1511.00790, Cunqueiro et al, arXiv:2110.14490, Apolinário et al, arXiv:2203.16352

Jets in **heavy-ion** collisions have to **propagate through a medium and interact** with it

→ imprinted modifications tell a story (jet quenching)

Compare **heavy-ion jets** with the well established vacuum baseline of **pp jets**

Infer the properties of the medium

(modified) bunch of collimated hoduory

Which AA jets should I compare to a given set of pp jets?

- ◆ Common procedure: Choose a window of **reconstructed jet** *p*_{*T*}
- ✦ Common problem:
 - AA jets **migrate** to lower reconstructed p_T (jet energy loss)
 - → We are comparing jets that **"started out" differently**.

Bin migration in R_{AA}

$$R_{AA} = \frac{d\sigma^{AA}/dp_T}{d\sigma^{pp}/dp_T} \qquad p_T \to p_T - \epsilon$$

$$\frac{d\epsilon}{\partial r_T} \int \qquad P_T \to p_T - \epsilon$$

$$\frac{d\epsilon}{\partial r_T} \int P_T \to p_T - \epsilon$$

Bin migration in R_{AA}

Which AA jets should I compare to a given set of pp jets?

- ◆ Common procedure: Choose a window of **reconstructed jet** *p*_{*T*}
- ✦ Common problem:
 - AA jets **migrate** to lower reconstructed p_T (jet energy loss)
 - → We are comparing jets that **"started out" differently**.

Brewer et al. Journal of High Energy Physics 2022(2), 1-22, Apolinário et al. arXiv:2401.14229

In the case of a <u>non-zero dispersion</u> it should hold for the <u>average</u>:

$$p_T^{\nu} - p_T^q(p_T^{\nu}) \approx \langle \epsilon \rangle(p_T^{\nu}) \implies Q_{AA}(p_T^{\nu}) \equiv \frac{p_T^q(p_T^{\nu})}{p_T^{\nu}} \approx 1 - \frac{\langle \epsilon \rangle(p_T^{\nu})}{p_T^{\nu}}$$

J. Brewer, J. Milhano, J. Thaler; <u>Phys. Rev. Lett.</u> \longrightarrow "1 – Q_{AA} is a proxy for the **average fractional jet energy loss**"

Event generation and analysis details

- → 10⁶ medium and vacuum samples generated with JEWEL w/ and w/o recoils (γ + jet and dijet events at $\sqrt{s_{NN}} = 5.02$ TeV and [0 10] % centrality)
 - Constituent event-wise background subtraction (<u>J. Milhano, K. Zapp, Eur.Phys.J.C 82 (2022) 11, 1010</u>)
- → Vacuum samples are generated as pp collisions weighted by isospin averaged nuclear PDFs
 → Differences between vacuum and medium samples are in principle <u>dominated by quenching effects</u>

Vacuum jet spectrum $\frac{d\sigma^{vac}}{d\sigma^{pp+nPDFs}} = \frac{d\sigma^{pp+nPDFs}}{d\sigma^{pp+nPDFs}}$

Medium jet spectrum $d\sigma^{med}$ $\frac{1}{\langle N_{coll} \rangle} \frac{d\sigma^{PbPb}}{dp_T}$

Quantile procedure validation

Energy loss as a function of jet radius (w/ recoils)

Larger jets lose a **smaller** fraction of their energy

João M. Silva

Energy loss dependence on color charge

aged A system ۹ _ CF RAA > Rij &+jet ~ 9 mit. jets dijet ~ mixture of Cosmon souling. In jets ? 9 and 3 mit. jets

Energy loss dependence on color charge

Energy loss dependence on color charge

Casimir scaling is significantly reduced with respect to naive single parton scaling

João M. Silva

Not feasible experimentally - jets are not measured with arbitrarily large p_T

$$\int_{p_T^{\nu}}^{+\infty} dp_T \, \frac{d\sigma^{\nu}}{dp_T} = \int_{p_T^q(p_T^{\nu})}^{+\infty} dp_T \, \frac{d\sigma^m}{dp_T}$$

Not feasible experimentally - jets are not measured with arbitrarily large p_T

Needs an **initial condition** to be set

The cutoff problem: using \tilde{Q}_{AA} as a solution

J. Brewer, J. Milhano, J. Thaler; <u>Phys.</u> <u>Rev. Lett. 122 (2019) 22, 222301</u>

Pseudo-quantile (\tilde{p}_T^q)

(equate cross sections rather than cumulative cross sections)

$$\frac{d\sigma^{\nu}}{dp_T^{\nu}}(p_T^{\nu}) = \frac{d\sigma^m}{d\tilde{p}_T^q}(\tilde{p}_T^q(p_T^{\nu}))$$
$$\implies \tilde{Q}_{AA} = \frac{\tilde{p}_T^q}{p_T^{\nu}}$$

The cutoff problem: using \tilde{Q}_{AA} as a solution

- ✦ The *Q_{AA}* provides a proxy for jets that started out similarly that can be used in inclusive jet events and possibly a model-independent way of quantifying jet energy loss;
- The color charge of the initiating parton does not play as important a role in jet energy loss as one would have thought by looking into *R*_{AA} the difference in spectrum steepness is quite impactful;
- Experimental challenge to the measurement of the Q_{AA} presented by a **momentum cutoff** on the spectrum is easily circumvented using \tilde{Q}_{AA} .

Back-up

Nuclear effects on the jet p_T spectrum

Nuclear effects on the R_{AA}

Differential version of the quantile procedure

$$\frac{d}{dp_T^{\nu}} \left(\int_{p_T^{\nu}}^{+\infty} dp_T \frac{d\sigma^{pp}}{dp_T} \right) = \frac{d}{dp_T^{\nu}} \left(\int_{p_T^q(p_T^{\nu})}^{+\infty} dp_T \frac{d\sigma^{AA}}{dp_T} \right)$$
$$\implies \frac{d\sigma^{pp}}{dp_T} (p_T^{\nu}) = \frac{dp_T^q}{dp_T^{\nu}} \frac{d\sigma^{AA}}{dp_T} (p_T^q(p_T^{\nu}))$$

Energy loss as a function of jet radius (w/o recoils)

Larger jets lose a larger fraction of their energy

João M. Silva

Energy loss as a function of jet radius (model comp.)

Energy loss as a function of jet radius (model comp.)

	vac ($p_{_{T}} \in [100, 200] \text{ GeV}$)
•••••	med w/o recoils, ($p_{\tau} \in [100, 200]$ GeV)
	med w/o recoils ($p_{\tau}^{q} \in [79, 170]$ GeV)
•••••	med w/ recoils, ($p_{\tau} \in [100, 200]$ GeV)
	med w/ recoils ($p_T^q \in [84, 177]$ GeV)

 R_g : ΔR of first C/A reclustering sequence branch passing the Soft Drop condition:

	vac (p $_{_{\rm T}}$ \in [100, 200] GeV)
•••••	med w/o recoils, ($p_T \in [100, 200]$ GeV)
	med w/o recoils ($p_{\tau}^{q} \in [79, 170]$ GeV)
•••••	med w/ recoils, ($p_{\tau} \in [100, 200]$ GeV)
	med w/ recoils ($p_T^q \in [84, 177]$ GeV)

 vac ($p_T \in [100, 200] \text{ GeV}$)

 med w/o recoils, ($p_T \in [100, 200] \text{ GeV}$)

 med w/ recoils, ($p_T \in [100, 200] \text{ GeV}$)

 $\Delta R \text{ of C/A reclustering sequence}$ branch passing the Dynamical Grooming (a = 1, k_T Drop) condition: $\frac{1}{p_{T,jet}} \max \left[z_i(1-z_i)p_{T,i}\left(\frac{\theta_i}{R}\right) \right]$

Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Phys. Rev. D 101(3), 034004 (2020)

Unbiased quantification of jet energy loss

João M. Silva

	vac ($p_{_{T}} \in$ [100, 200] GeV)
•••••	med w/o recoils, ($p_{T} \in [100, 200]$ GeV)
	med w/o recoils ($p_{_T}^q \in [79, 170]$ GeV)
•••••	med w/ recoils, (p $_{_{\rm T}}$ \in [100, 200] GeV)
	med w/ recoils ($p_T^q \in [84, 177]$ GeV)

 ΔR of C/A reclustering sequence branch passing the Dynamical Grooming $(a = 1, k_T \text{Drop})$ condition:

Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Phys. Rev. D 101(3), 034004 (2020)

Unbiased quantification of jet energy loss

João M. Silva

	vac ($p_T \in [100, 200]$ GeV)
•••••	med w/o recoils, (p $_{_{\rm T}} \in$ [100, 200] GeV)
	med w/o recoils ($p_{_{T}}^{q} \in [79, 170]$ GeV)
•••••	med w/ recoils, (p $_{_{\rm T}}$ \in [100, 200] GeV)
	med w/ recoils ($p_T^q \in [84, 177]$ GeV)

Momentum dispersion:

Energy loss dependence on substructure

Q_{AA} sensitivity to spectrum binning

