Determination of Higgs boson properties and searches for new resonances using highly boosted objects with the ATLAS experiment

Kunlin Ran on behalf of the ATLAS Collaboration DESY

BOOST 2024, 31.07.2024

Introduction

- In pp collision events, two or more object signatures may be overlapped in the detector due to extremely high momenta
- Usually in the boosted region, BSM theory effects become more and more significant
- Important to test the validity of the SM or to discover new physics there!
- Using highly boosted objects, the Higgs boson properties are studied in details with Run 2 datasets in the ATLAS experiment
 - $V(\rightarrow \text{lep})H(\rightarrow bb/cc)$ analysis [ATLAS-CONF-2024-010]
 - $V(\rightarrow qq)H(\rightarrow bb)$ analysis [HIGG-2021-11]
 - $ttH(\rightarrow bb)$ analysis [HIGG-2020-24]
 - CP properties of the top Yukawa coupling in the $ttH/tH (\rightarrow bb)$ processes [HIGG-2020-03]
 - High mass Higgs-like resonances to Zγ search [HIGG-2018-44]

$VH(\rightarrow bb/cc)$

H - b Yukawa coupling: largest impact on the Higgs width \rightarrow crucial to constrain new physics

- $H \rightarrow bb$: H can be reconstructed from decay products
- Most sensitive to measure rarer Higgs prods (ie VH, ttH)
- Probe kinematic properties in the VH STXS framework
- $H \rightarrow cc$: small BR; c quark: smaller life time \rightarrow much more challenging
- $V(\rightarrow lep)H$: clean signal with leptonic decays \rightarrow separate $H \rightarrow bb/cc$ from large jet bkg

DESY. | Higgs properties using highly boosted objects at ATLAS | Kunlin Ran, 31.07.2024

1-lepton (lv)

Run 2 $V(\rightarrow lep)H(\rightarrow bb/cc)$ analysis [ATLAS-CONF-2024-010]

- Large-R (R = 1.0) jet: formed from topological clusters of energy depositions with anti-kt algorithms, used for p^V_T > 400 GeV in the VH(→ bb) channel
 - To identify $H \rightarrow bb$ decay, <u>DL1r b-tagger</u> applied to p_T -dependent radius (VR) track jets within large-R jet
 - Good sensitivity across full range!

DESY. | Higgs properties using highly boosted objects at ATLAS | Kunlin Ran, 31.07.2024

BDT distributions and results [ATLAS-CONF-2024-010]

- BDTs used to maximize signal sensitivity in every category, firstly applied to boosted VH(bb), VH(cc) channels
- 15% better precision of μ_{VH}^{bb} wrt previous <u>resolved</u>, <u>boosted VH(bb)</u> results
 - Better object reconstructions/calibrations, improved analysis strategies, etc
- First time exploring $\sigma(p_T^V > 600 \text{ GeV})$, contributed by the boosted channel!
- $\mu_{VH}^{cc} = 1.0^{+5.4}_{-5.2}$; < 11.3 (< 10.4 exp assuming $\mu_{VH}^{cc} = 0$) at 95% CL
 - Factor of 3 improvement wrt previous VH(cc) search ٠
- All results agree with SM

ınlin Ran, 31.07.2024

$V(\rightarrow qq)H(\rightarrow bb)$ [HIGG-2021-11]

VH(bb) in highly boosted topology

.

- Sensitive to higher-order effective operators in high p_T , important to test new physics
- Run 2 V(→ qq)H(→ bb) analysis: first study in two large-R topology in ATLAS!
 - Greater BR than $V(\rightarrow lep)H(\rightarrow bb) \rightarrow$ potential to probe Higgs properties in higher p_T to TeV scale!
- Large-R jets used to identify/reconstruct high p_T hadronic V, H
 - **<u>W/Z tagger</u>**: optimized using m_J , $D_2^{\beta=1}$, N_{trk} , as a function of p_T^J
 - **Dedicated** <u>Hbb tagger (Xbb)</u>: discriminate $H \rightarrow bb$ decay from gluon, light or top quark jets
- Dominant multijet background modeled by the data-driven method

Results [HIGG-2021-11]

• $\mu_{VH} = 1.4^{+1.0}_{-0.9}$, with 1.7 σ significance; $\sigma_{VH} = 3.1 \pm 1.3(stat.)^{+1.8}_{-1.4}(syst.)$ pb

Kinematic region	Observed μ	Observed σ [fb]	Expected σ [fb]
$250 \le p_{\rm T}^H < 450 { m ~GeV}, y_H < 2$	$0.8^{+2.2}_{-1.9}$	47^{+125}_{-109}	57.0
$450 \le p_{\rm T}^H < 650 {\rm GeV}, y_H < 2$	$0.4^{+1.7}_{-1.5}$	2^{+10}_{-9}	5.9
$p_{\mathrm{T}}^H \ge 650 \mathrm{GeV}, y_H < 2$	$5.3^{+11.3}_{-3.2}$	$6^{+13}_{-4} \ (<\!43)$	1.2

 Though limited by large uncertainties atm, the analysis opens a fully hadronic region with high sensitivity to new physics in the future!

$ttH(\rightarrow bb)$

- *ttH*: direct constraint on *H* − *t* (heaviest SM particle) Yukawa coupling at tree level → very sensitive to BSM effects
 - Observed by <u>ATLAS/CMS</u> using several decay modes
- $ttH(\rightarrow bb)$: involves only H f couplings \rightarrow sensitivity enhanced!

- While with large irreducible background: $t\bar{t} + jets$ (originates from b/c) \rightarrow challenging to predict theoretically
 - Dominant modelling systematics in the previous <u>Run 2 analysis</u>

- In <u>ATL-PHYS-PUB-2022-026</u>, MC generators of dominant backgrounds compared at particle level in the similar phase spaces of the previous <u>ttH(bb), ttH(ML)</u> analyses
- Smaller scale uncertainties for the 4FS NLO generators, used for the new ttH(bb) analysis
- Starting point to develop common theory uncertainty strategies for the ATLAS/CMS combination

Legacy ttH(bb) analysis [HIGG-2020-24]

- Re-analyze Run 2 data in single-/di-lepton channels
 - Improved b-tagging algorithms; NN techniques for categorizations and p_T^H reconstruction \rightarrow **sensitivity increased!**
- Boosted category in single-lepton: reclustered (RC) anti-kt jet (R = 1.0) for high p_T H, identified by DNN
 - DL1r b-tagger applied to two small-R (R=0.4) particle flow jets inside RC jet

Results [HIGG-2020-24]

- $\mu_{ttH} = 0.81^{+0.22}_{-0.19} = 0.81 \pm 0.11(stat.)^{+0.20}_{-0.16}(syst.)$, significance: 4.6 σ (5.4 σ exp)
 - Improved *tt* + *jets* background modellings, systematics updated → better control over background
- Exclusive boosted regions: improve sensitivity by ~15% for measuring $\sigma_{ttH}(p_T^H > 450 \text{ GeV})$, compared with the scenario w/o introducing boosted regions

• 50% better overall sensitivity wrt <u>previous analysis</u>, particularly 70% better for $\sigma_{ttH}(p_T^H > 450 \text{ GeV})$, all consistent with SM

CP properties of H - t coupling

- SM Higgs: $J^{CP} = 0^{++}$
- In BSM, CP-odd H f couplings won't be suppressed by the new physics scale → maybe significant at tree level
 - $J^P = 0^-$ excluded by more than 95% CL (<u>ATLAS</u>, <u>CMS</u>)
 - Pure CP-odd H t coupling excluded by more than 3σ significance in $ttH(\gamma\gamma)$ (ATLAS, CMS) and multilepton analyses
- CP-odd/-even mixture states not ruled out → CP-odd components observation will open up CP-violation possibility in the Higgs sector
 - Play a fundamental role in explaining the matter–antimatter asymmetry of the universe
- *ttH/tH*: sensitive to potential CP-mixing at tree level, especially in the boosted topology
- $\mathcal{L}_{ttH} = -\kappa'_t y_t \phi \overline{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$
 - $i\gamma_5 \sin \alpha$: pseudoscalar coupling $(J^{CP} = 0^{+-})$, change σ differentially; κ'_t : inclusive impact to σ
 - $\sigma_{tH} > \sigma_{ttH}$ if there're significant CP-odd components

Run 2 ttH/tH(bb) analysis to study CP properties [HIGG-2020-03]

- Run 2 *ttH or tH*(\rightarrow *bb*) analysis: firstly used for CP properties of *H t* coupling
 - Based on previous coupling analysis, re-optimized for the CP sensitivities
- ML used for H/top reconstruction and event categorization
- SR_{boosted}: RC jet (R = 1.0) for high p_T H, identified by DNN
- In the region $N_{tH}^{odd} \approx N_{ttH} \rightarrow N_{ttH/tH}^{odd} \approx 1.5 N_{ttH/tH}^{even} \rightarrow$ substantial sensitivities, no need b_2 , b_4 observables!

Results [HIGG-2020-03]

- Expectations
 - CP-even: $\kappa'_t = 1.00^{+0.29}_{-0.27}, \alpha \in [-180^\circ, -173^\circ] \cup [-50^\circ, 52^\circ] \cup [171^\circ, 180^\circ]$
 - CP-odd: $\kappa'_t = 1.00^{+0.22}_{-0.33}$, $\alpha \in [-157^\circ, -41^\circ] \cup [43^\circ, 157^\circ]$
- $tt + \ge 1b$ modelling uncertainties dominate, impact to α : $^{+37^{\circ}}_{-51^{\circ}}$
 - Better modelling of *ttbb* background will be the essential ingredient in the future!
- Compatible with pure CP-even or CP-odd (1.2 σ interval) assumptions
- Complement to <u>HGam analysis</u>, allow for future combination
- This channel will become quite sensitive for the CP studies in the future due to the tree-level sensitivity and high *BR*_{bb}

High mass Zγ [HIGG-2018-44]

- Search for spin-0/spin-2 $pp \rightarrow X \rightarrow Z\gamma$ from 220 to 3400 GeV using Run 2 data
 - Test wide range of BSM scenarios
- Final states: $Z(\rightarrow ll)\gamma \rightarrow$ powerful experimental signature!
 - High reconstruction efficiency; $m_{ll\gamma}$: good resolution
 - Leptonic and photon signatures \rightarrow relatively small backgrounds
- High mass $X \rightarrow \text{boosted } Z \rightarrow \text{collimated electrons}$, $\Delta R(e, e) \sim 0.2$ at 3400 GeV
- Low ID efficiencies with the Loose criterion (~15-20% loss for higher masses)
- Developed dedicated electron ID with MVA method
- Combine Loose and MVA ID (Mixed ID) results in 6% (13%) efficiency improvement for $m_X = 200 \text{ GeV}$ (3400 GeV) wrt Loose ID
- Due to the same reason, ~20% of sub-leading electrons mis-reconstructed as photons for higher m_X
- Define/optimize selections for electrons mis-reconstructed as photons: eγ channel
 - 10% efficiency improvement wrt ee only

Selection	Electron	Electron as photon
p_{T}	> 10 GeV	> 50 GeV
η Ε	< 2.47	< 2.47
	Exclude [1.37, 1.52]	Exclude [1.37, 1.52]
$ d_0 /\sigma_{d_0}$	< 5	
$ z_0 \sin \theta $	< 0.5 mm	
Identification	Mixed	MVA
Isolation	Track-based Tight	

Results [HIGG-2018-44]

- **Discriminant variable:** *mlly*; Parametric signal/background models used
- Largest significance (spin 0): 2.3 σ at 420 GeV
- No significant excess wrt the background-only hypothesis
- Due to the increased Run 2 dataset and the use of an ML electron ID technique
 - Expected upper limit improved by a factor of 1.9 to 4 for m_X in [250 2400] GeV wrt previous partial Run 2 analysis
 - Search range extended to 3.4 TeV
 - Better expected upper limits for $m_X < 2.3$ TeV wrt $Z(\rightarrow qq)\gamma$ analysis

Summary

- Using Run 2 datasets, the Higgs boson properties are studied in various aspects using highly boosted objects
- $V(\rightarrow lep)H(\rightarrow bb/cc)$ analysis [ATLAS-CONF-2024-010]
 - Large-R jet used for $p_T^V > 400$ GeV in the $VH(\rightarrow bb)$ channel \rightarrow good sensitivity achieved!
- $V(\rightarrow qq)H(\rightarrow bb)$ analysis [HIGG-2021-11]
 - First study in two large-R topology in ATLAS!
 - Open a fully hadronic region with high sensitivity to new physics when larger data collected
- *ttH*(→ *bb*) analysis [HIGG-2020-24]
 - Boosted category defined using RC jet \rightarrow improve sensitivity by ~15% for measuring σ_{ttH} in high p_T^H
- CP properties of the top Yukawa coupling in the $ttH/tH (\rightarrow bb)$ processes [HIGG-2020-03]
 - CP-odd sensitive boosted SR defined using RC jet
- High mass Higgs-like resonances to *Z*γ search [HIGG-2018-44]
 - Developed merged electron ID and identified electrons mis-reconstructed as photons for the decay products from the boosted Z → improved efficiencies!

Run 2 $V(\rightarrow lep)H(\rightarrow bb/cc)$ analysis [ATLAS-CONF-2024-010]

- Large-R (R = 1.0) jet: formed from topological energy deposition anti-kt algorithm, used for p^V_T > 400 GeV in the VH(→ bb) channel
 - To identify $H \rightarrow bb$ decay, <u>DL1r b-tagger</u> applied to p_T -dependent radius (VR) track jets within large-R jet
 - Good sensitivity across full range!
- Updates wrt previous <u>resolved</u>, <u>boosted VH(bb)</u>, <u>VH(cc)</u> analyses
 - Better lepton, jet reconstruction/calibration; Improved FT algorithm combining b-/c- jet ID, more precise calibration
 - Improved SR/CR definitions as a function of n_l , n_j , p_T^V (harmonized with STXS), background predictions and estimations

DESY. | Higgs properties using highly boosted objects at ATLAS | Kunlin Ran, 31.07.2024

BDT distributions and results [ATLAS-CONF-2024-010]

DESY. | Higgs properties using highly boosted objects at ATLAS | Kunlin Ran, 31.07.2024

ttbb and ttW modellings for the ttH(bb/ML) analyses

 In <u>ATL-PHYS-PUB-2022-026</u>, MC generators of dominant backgrounds compared at particle level in the similar phase spaces of the previous <u>ttH(bb)</u>, <u>ttH(ML)</u> analyses

- Smaller scale uncertainties for the 4FS NLO generators, used for the new ttH(bb) analysis
- Starting point to develop common theory uncertainty strategies for the ATLAS/CMS combination

tŦW

- Overall differences mostly within the scale uncertainty bands
- Small shape effects of scale uncertainties (<10%), while significant impacts to acceptances
- Tree-level EW effects \rightarrow minor shape impacts, up to 20% on σ at high N_j
- Significant effects for MG5_aMC@NLO+Pythia8 FxFx

Legacy ttH(bb) analysis [HIGG-2020-24]

Re-analyze Run 2 data in single-/di-lepton channels

- Improved b-tagging algorithm; less requirements on $N_b \rightarrow$ increased acceptance and efficiency
- Advanced NN techniques (transformer) used to categorize events and to reconstruct $p_T^H \rightarrow$ sensitivity increased!
- Boosted category in single-lepton: reclustered (RC) antikt jet (R = 1.0) for high p_T H

Results [HIGG-2020-24]

- $\mu_{ttH} = 0.81^{+0.22}_{-0.19} = 0.81 \pm 0.11(stat.)^{+0.20}_{-0.16}(syst.)$, significance: 4.6 σ (5.4 σ exp)
 - *ttH* modelling uncertainties dominated
- Improved tt + jets background modellings, systematics updated \rightarrow better control over background
- Exclusive boosted regions: improve sensitivity by ~15% for measuring $\sigma_{ttH}(p_T^H > 450 \text{ GeV})$, compared with the scenario where the events are selected in the resolved regions

Better overall sensitivity wrt previous analysis, all consistent with SM

Run 2 ttH/tH(bb) analysis to study CP properties [HIGG-2020-03]

- Run 2 *ttH or tH*(\rightarrow *bb*) in single-/di-lepton channels: firstly used for CP properties of *H t* coupling
- ML used for H/top reconstruction and event categorization
- SR_{boosted}: RC jet (R = 1.0) for high p_T H, identified by DNN
 - In the region $N_{tH}^{odd} \approx N_{ttH} \rightarrow N_{ttH/tH}^{odd} \approx 1.5 N_{ttH/tH}^{even} \rightarrow$ substantial sensitivities, no need b_2 , b_4 observables!

