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Background model independence

Signal model independence

credits to M. Krdmer, cf. Karagiorgi, Kasieczka, Kravitz, Nachman, Shih, arXiv:2112.03769 [hep-ph]
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Anomaly searches

1 Introduction

e We are still looking for BSM physics;

e LHC does and will generate large amount of data;

e No clear anomalies in the near future ...
— keep exploring with direct searches is not feasible;

— see recent ATLAS and CMS analysis with unsupervised methods.
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Anomaly searches

1 Introduction

e We are still looking for BSM physics;

e LHC does and will generate large amount of data;

e No clear anomalies in the near future ...
— keep exploring with direct searches is not feasible;

— see recent ATLAS and CMS analysis with unsupervised methods.

model agnostic searches no loss in sensitivity

Have we fully explored the collected data?
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Density estimation and representations

1 Introduction

Density estimates used as agnostic anomaly scores;

Only focus on density estimation of background:
- can be used directly on data;

- sensitivity requires dealing with large input spaces;

Improved representation of the data is key...
— Physics motivated preprocessing/observables.

Different pre-trainings are pretty much in development ...

We want to learn invariances and impose them on the anomaly scores.
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Self-supervision
2 DarkCLR

e Preprocessing solves many problems with neural networks;
- NNs are not invariant to physical symmetries in data;

- NNs like numbers of O(1);

- "data efficiency" and good representations?

e Self-supervision: during training we use pseudo-labels, not truth labels;
— task used to create new representations/observables;
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Self-supervision
2 DarkCLR

e Preprocessing solves many problems with neural networks;
- NNs are not invariant to physical symmetries in data;

- NNs like numbers of O(1);

- "data efficiency" and good representations?

e Self-supervision: during training we use pseudo-labels, not truth labels;
— task used to create new representations/observables;

Key aspects of representations:

e |nvariance to certain transformations of the jet/event
e Discriminative power

In CLR we construct a mapping to a new representation space
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CLR training

2 DarkCLR

*as in JetCLR, arXiv:210804253

e Pseudo-labels are defined from pairs:
- {(xi,x{)}: positive pair
— alignment/invariance;

- {(xi,%) U (xi,x])) }: negative pair
— uniformity/discriminative; .

e f: R — Zisatransformer-encoder;

e s(-,-) cosine distance in rep. space.

log exp(s(zi,z})/7)
>_Tizjlexp(s(zi, 2)/7) + exp(s(zi, z) /7))

L=
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CLR for anomaly detection
2 DarkCLR

Augmentation: any transformation (e.g. rotation) of the original jet

e Example:
— detector invariance under rotations;
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CLR for anomaly detection
2 DarkCLR

Augmentation: any transformation (e.g. rotation) of the original jet
e Example:

— detector invariance under rotations;

e Background data does not known BSM
features.

Can we train a transformer-encoder network only on background events?

e Possible, but with no guarantee to learn representations sensitive to new physics;
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CLR for anomaly detection
2 DarkCLR

Augmentation: any transformation (e.g. rotation) of the original jet
e Example:

— detector invariance under rotations;

e Background data does not known BSM
features.

Can we train a transformer-encoder network only on background events?

e Possible, but with no guarantee to learn representations sensitive to new physics;

Introduce general BSM motivated anomalous representations z*
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CLR for anomaly detection
2 DarkCLR

*from "Anomalies, representations, and self-supervision", arXiv:2301.04660

Contrastive Learning for anomaly detection:

e anomalous pairs:  {(x;,x;") } where x;' comes from a different set of augmentations;

e These are motivated by BSM features, general, and signal agnostic.

(s(zi,2)—s(z1,2i%)) /T _ S(Ziyz;k) — S(Zia Zi)
T

Lacrry = — logexp
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Dark showers
2 DarkCLR

*from "Semi-visible jets, energy-based models, and self-supervision", arXiv:2312.03067

New physics hidden in jet substructure;

Benchmark signal: semi-visible jets

e 7' = 2TeV dark sects mediator;
e qq dark quarks charged under SU(3)g4;
e mgy, = 500MeV;

e A =m,, =m,, = 5GeV,;

QCD-like showers with fraction of invisible particles

*studied in arXiv:2006.08639
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Dark showers
2 DarkCLR

*from "Semi-visible jets, energy-based models, and self-supervision", arXiv:2312.03067

New physics hidden in jet substructure;
Benchmark signal: semi-visible jets

e Jet constituents:
- (pr,7, ¢) of each constituent;

- pr € [150,350] GeV, || < 2;
e anti-kt clustering AR = 0.8;

e empty entries are zero-padded.

rinv = 0.75, mq = 5GeV — referred to as "Aachen" model.

*studied in arXiv:2006.08639

8/15 Self-supervision for anomaly detection BOOST 2024 July 31, 2024


https://arxiv.org/pdf/2312.03067
https://arxiv.org/abs/2006.08639

Augmentations
2 DarkCLR

rotations in [0, 27]:
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2 DarkCLR

rotations in [0, 27]:

Augmentations

translations in [, ¢]:
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2 DarkCLR

rotations in [0, 27]:

Augmentations

translations in [, ¢]:

permutation invariance:
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2 DarkCLR

rotations in [0, 27]:

Applying pgrop to a QCD jet:

Augmentations

translations in [, ¢]:

permutation invariance:
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Transformer encoder

2 DarkCLR
Transformer encoder (XN)

Embed
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2 DarkCLR

Robustness of DarkCLR
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Representations are discriminative and easier to separate with a simple linear classifier.
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Anomaly scores

3 Anomalies

Looking at anomalous objects. ..
— events with low density.

First look at the representation space;

We expect information encoded in the length of the vector

SCIR = HZHLz

Simple and interesting anomaly score.
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Anomaly scores

3 Anomalies

e Looking at anomalous objects...
— events with low density.

* from arXiv:2206.14225 and arXiv:2105.05735

e (Normalized)AutoEncoder based anomaly score:
e—Eo(x)

Eg = MSE(x,x') po (X) = “q—;

e see also Florian’s talk for applications within CMS.

Both anomaly scores will be (approx) invariant to the augmentations
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e scir — anomalies are pushed further

away in Z space;

e syae — using the full information in the

vector stabilizes the result.
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Robustness of DarkCLR

3 Anomalies
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Representations generalize over different pheno parameters
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Conclusions

4 Conclusions

* data will be available on Zenodo in the next few days with DOI:10.5281/zenodo.12801842

e ML can lead the future of anomaly searches;
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4 Conclusions

* data will be available on Zenodo in the next few days with DOI:10.5281/zenodo.12801842

e ML can lead the future of anomaly searches;

e We can use CLR to learn powerful representations:
— approximately invariant under transformations;

— sensitive to BSM effects;
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4 Conclusions

* data will be available on Zenodo in the next few days with DOI:10.5281/zenodo.12801842

e ML can lead the future of anomaly searches;

e We can use CLR to learn powerful representations:
— approximately invariant under transformations;
— sensitive to BSM effects;

e We studied a semi-visible jets example*:
— representations are informative;

— we tested the robustness to different pheno paramters.

14/15  Self-supervision for anomaly detection BOOST 2024 July 31, 2024



Conclusions

4 Conclusions

* data will be available on Zenodo in the next few days with DOI:10.5281/zenodo.12801842

e ML can lead the future of anomaly searches;

e We can use CLR to learn powerful representations:
— approximately invariant under transformations;
— sensitive to BSM effects;

e We studied a semi-visible jets example*:
— representations are informative;

— we tested the robustness to different pheno paramters.
Outlook:
e Have a more interpretable latent space;

e Extend the study to other dark jet models with different signatures.
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High-level features

5 Backup
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Effects of anomalous augmentations
5 Backup
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