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Anomaly searches1 Introduction

credits to M. Krämer, cf. Karagiorgi, Kasieczka, Kravitz, Nachman, Shih, arXiv:2112.03769 [hep-ph]
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Anomaly searches1 Introduction
• We are still looking for BSM physics;
• LHC does and will generate large amount of data;
• No clear anomalies in the near future . . .

−→ keep exploring with direct searches is not feasible;
−→ see recent ATLAS and CMS analysis with unsupervised methods.

model agnostic searches no loss in sensitivity

Have we fully explored the collected data?
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Density estimation and representations1 Introduction

• Density estimates used as agnostic anomaly scores;
• Only focus on density estimation of background:

– can be used directly on data;
– sensitivity requires dealing with large input spaces;

• Improved representation of the data is key. . .
−→ Physics motivated preprocessing/observables.

• Different pre-trainings are pretty much in development . . .
We want to learn invariances and impose them on the anomaly scores.
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Self-supervision2 DarkCLR
• Preprocessing solves many problems with neural networks;

– NNs are not invariant to physical symmetries in data;
– NNs like numbers of O(1);
– "data efficiency" and good representations?

• Self-supervision: during training we use pseudo-labels, not truth labels;
−→ task used to create new representations/observables;

Key aspects of representations:
• Invariance to certain transformations of the jet/event
• Discriminative power

In CLR we construct a mapping to a new representation space
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CLR training2 DarkCLR
*as in JetCLR, arXiv:210804253

• Pseudo-labels are defined from pairs:
– {(xi, x′i)}: positive pair

→ alignment/invariance;
– {(xi, xj) ∪ (xi, x′j))}: negative pair

→ uniformity/discriminative;
• f : R → Z is a transformer-encoder;
• s(·, ·) cosine distance in rep. space.

L = − log
exp(s(zi, z′i)/τ)∑ Ii ̸=j[exp(s(zi, zj)/τ) + exp(s(zi, z′j)/τ)]
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CLR for anomaly detection2 DarkCLR

Augmentation: any transformation (e.g. rotation) of the original jet
• Example:

−→ detector invariance under rotations;

• Background data does not known BSMfeatures.
Can we train a transformer-encoder network only on background events?
• Possible, but with no guarantee to learn representations sensitive to new physics;

Introduce general BSM motivated anomalous representations z∗
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CLR for anomaly detection2 DarkCLR
*from "Anomalies, representations, and self-supervision", arXiv:2301.04660

Contrastive Learning for anomaly detection:
• anomalous pairs: {(xi, x∗i )} where x∗i comes from a different set of augmentations;
• These are motivated by BSM features, general, and signal agnostic.

LaCLR+ = − log exp(s(zi,z′i )−s(zi,zi∗))/τ =
s(zi, z∗i )− s(zi, zi)

τ

7/15 Self-supervision for anomaly detection BOOST 2024 July 31, 2024

https://arxiv.org/pdf/2301.04660


Dark showers2 DarkCLR
*from "Semi-visible jets, energy-based models, and self-supervision", arXiv:2312.03067New physics hidden in jet substructure;

Benchmark signal: semi-visible jets
• Z′ = 2TeV dark sects mediator;
• qd dark quarks charged under SU(3)d;
• mqd = 500MeV;
• Λ = mπd = mρd = 5GeV;

QCD-like showers with fraction of invisible particles
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*studied in arXiv:2006.08639
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Dark showers2 DarkCLR
*from "Semi-visible jets, energy-based models, and self-supervision", arXiv:2312.03067New physics hidden in jet substructure;

Benchmark signal: semi-visible jets
• Jet constituents:

– (pT, η, ϕ) of each constituent;
– pT ∈ [150, 350]GeV, |ηj| < 2;

• anti-kt clustering∆R = 0.8;
• empty entries are zero-padded.
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*studied in arXiv:2006.08639
rinv = 0.75, md = 5GeV−→ referred to as "Aachen" model.
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Augmentations2 DarkCLR
rotations in [0, 2π]:

translations in [η, ϕ]: permutation invariance:

f (x) = f (Sn(x))

Applying pdrop to a QCD jet:
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Transformer encoder2 DarkCLR
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Transformer encoder (×N)
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Robustness of DarkCLR2 DarkCLR
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Representations are discriminative and easier to separate with a simple linear classifier.
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Anomaly scores3 Anomalies

• Looking at anomalous objects. . .
−→ events with low density.

• First look at the representation space;
• We expect information encoded in the length of the vector

sCLR = ||z||L2
• Simple and interesting anomaly score.
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Anomaly scores3 Anomalies
• Looking at anomalous objects. . .
−→ events with low density.

* from arXiv:2206.14225 and arXiv:2105.05735
• (Normalized)AutoEncoder based anomaly score:

Eθ = MSE(x, x′) pθ (x) = e−Eθ(x)

Ω ;
• see also Florian’s talk for applications within CMS.

Both anomaly scores will be (approx) invariant to the augmentations
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• sCLR → anomalies are pushed furtheraway in Z space;
• sNAE → using the full information in thevector stabilizes the result.
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Robustness of DarkCLR3 Anomalies
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Representations generalize over different pheno parameters
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Conclusions4 Conclusions
* data will be available on Zenodo in the next few days with DOI:10.5281/zenodo.12801842

• ML can lead the future of anomaly searches;

• We can use CLR to learn powerful representations:

— approximately invariant under transformations;
— sensitive to BSM effects;

• We studied a semi-visible jets example*:

— representations are informative;
— we tested the robustness to different pheno paramters.

Outlook:
• Have a more interpretable latent space;
• Extend the study to other dark jet models with different signatures.
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Semi-visible jets, energy-basedmodels, and self-supervision
BOOST 2024 - Genova

Thank you for listening! Any questions?
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Transformer Encoder5 Backup
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High-level features5 Backup
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Effects of anomalous augmentations5 Backup
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