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Why signal-agnostic searches for new physics in HEP?

What Dark Matter (DM) is:
o In practice: Anything that’s not described by the Standard Model of Particle Physics

o Theoretically: Pick your poison! Supersymmetry (SUSY), Weakly Interacting Massive
Particles (WIMPs)...

What if we are not searching at the right place?
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Why signal-agnostic searches for new physics in HEP?

Traditional search Anomaly detection
o Targets a specific new o Makes no/few assumptions
physics signal model about the new physics
o Maximum sensitivity to o Smaller sensitivity
this signal compared to traditional
search for the target signal
o Potentially very little
sensitivity to different o Sensitive to a wide range of
experimental signatures new physics scenarii!
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DM as a strongly coupled dark sector

o Hidden Valley [arXiv:hep-ph/0604261] with new particles and forces form the dark sector

e Strongly coupled dark sector
- New confining SU(N) force, dark QCD, and dark quarks

o Portal between the SM and dark sectors via a heavy mediator

o Considering non-resonant production of dark quarks via t-channel mediator
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https://arxiv.org/abs/hep-ph/0604261

Production of semivisible jets (SVJs) and model parameters

@ Dark quarks hadronize in the dark sector

o Unstable dark hadrons promptly decay to
SM quarks

o SM quarks hadronize in the SM sector

- Semivisible jets (SVJs)
[arXiv:1503.00009, arXiv:1707.05326]

- Different jet substructure

Model parameters:

e mg: Mass of the mediator @ riny: Jet invisible fraction
o Effective parameter

Branching ratio DM — ¢gq
@ Masses of all dark hadrons fixed to & 4

20 GeV Number of stable dark hadrons
Tiny =
v Number of dark hadrons
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Anomaly detection to search for SVJs

The details of the shower in the dark sector depend on many unknown
parameters, e.g.:

o Number of dark colors

o Number of dark flavors ?
@ Masses of the dark hadrons

e Dark hadronization scale

- SVJ substructure very
model-dependent

- Large parameter space to
cover

- Unsupervised taggers
complementary to
supervised strategies to

explore the parameter space
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AEs are trained to minimize the
reconstruction error (e.g. MSE) between
input and output:

L(z) = [lg(f () — =l

Aim: that examples out of the training
distribution, i.e. anomalies, have a higher
reconstruction error

Trained on SM data, AEs can perform
signal-agnostic searches for new physics
[arXiv:1808.08979, arXiv:1808.08992]

Will use interchangeably:
o “training” and “background”

o “anomaly” and “signal”
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Anomaly detection with autoencoders (AE)

Input Reconstructed

features features
Latent space

Encoded features

Y Y
Encoder f Decoder g

Training examples

Examples out of
training distribution

Number of
examples

I Reconstruction error
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SVJ experimental signature: SM hadrons

- Stable dark hadrons
Missing transverse momentum (£)

aligned with a jet

o= IS

Instrumental £+

o Mostly QCD: artificial missing transverse energy Fr
aligned with jet from jet energy mismeasurement

o Autoencoder-based anomaly detection proved to work
well against QCD jets [arXiv:2112.02864]

Genuine
o tt, W + jets, ... with W(— lv)

o Lost lepton, genuine £ from neutrino

o More challenging for anomaly detection
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Input features and architecture

o The different ML models presented in the following have the same architecture (fully
connected NN, 10-10-6-10-10 hidden neurons) and input features

o They differ only by their loss function

o Input features (quantile morphing to normal distribution), anti-k; R = 0.8 jets:

o Axis major o Transverse momentum dispersion p%
o Axis minor o Softdrop mass
o Fist energy flow polynomial EFP1 @ 2-subjettiness 1o
o The C’2B:O'5 energy correlation function o 3-subjettiness 73
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Shortcoming of standard autoencoder

e Training standard AE on simulated background tt jets minimizing the MSE between
input and reconstructed features®

- When the background MSE is minimal, the AE reconstructs background and
signal jets equally well!

- The reconstruction error is not a good metric!

- Cannot optimize on AUC without introducing signal model dependence!
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http://cds.cern.ch/record/2871591?ln=en

The problem of out-of-distribution (OOD) reconstruction

o Standard AEs are trained to minimize reco error in the background phase-space

o but AEs are free to minimize reco error outside the background phase-space!
including the unknown signal phase-space...

=> This is the problem of OOD reconstruction / “complexity bias”:

Full phase space

OO0D
reconstruction
in the signal

Training / background phase space

phase space

00D Anomaly / signal
phase space
Low reconstruction
error phase space
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The Normalized Autoencoder (NAE) paradigm

Ensure that the low reconstruction error probability distribution matches that
of the training data?

e Define a probability distribution py so that regions _ 1 .
with low reco error Ey have high probability po(w) = Qg exp (—Fp(z))

o The loss is designed to learn py = pgata:

Lo = Eanpgara [Bo ()] — B op, [Eo(a")]

positive energy Ey negative energy F_

o MCMC to sample “negative samples” x’ from pg and compute their reco error E_

Training / background data , |~ > Training / background data , | ..~ 7

signal data signal data

Low reconstruction error Low reconstruction error

2NAE first introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225
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The naive fix

Modified default loss function, compared to arXiv:2105.05735, to:

e prevent negative loss and the divergence of negative energy

e minimize the positive energy while the energy difference is close to 03:

L =log(cosh (E4+ — E_))+aEy a > 0, hyper-parameter?
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- Signal SVJ reconstruction is efficiently suppressed!

-> How to define stopping condition in a fully signal-agnostic way?

SRelaxing this point, with L = log (cosh (ELr — E,)), the issue developed in next slides is still observed
4

a = 0.001 in this case
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sserstein distance as optimal metric
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and AE probability distributions
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Illustration before collapse:

e Background (positive) and NN
(negative) probability distributions
match

- Low EMD and low energy
difference between negative and
positive probability distributions

- Anomalies have large reco error

Illustration after collapse:

o Large discrepancy between back-
ground and NN probability
distributions

- Large EMD but low energy
difference between negative and
positive probability distributions

-> Anomalies are not distinguishable
from background
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Minimizing the Wasserstein distance

o Wasserstein Normalized Autoencoder (WNAE) loss function (CMS PAS MLG-24-002):
Wasserstein distance between = ~ pgata and =’ ~ pg

Lo(z) = inf

E Nl —
YEM(Paata-Po) (@)~ oll]

o Anti-correlation between Wasserstein distance and AUC!

- Fully signal-agnostic training procedure: best epoch is epoch with minimal
Wasserstein distance!
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Learning the background probability

Epoch 1 vs Epoch 500
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Learning the background probability

Epoch 1 vs Epoch 500
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Wasserstein Normalized Autoencoder - Results

o The WNAE achieves sensible improvement compared to the standard AE!
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Conclusions

e Standard AEs are prone to out-of-distribution reconstruction because they are free to
minimize the reconstruction error outside the training phase space

o Normalized AEs (NAE) propose a mechanism to ensure that the learned probability
distribution matches that of the training data

o The minimization of the NAE loss function is unstable, and ad-hoc regularization is
employed to obtain a well-behave loss

o Found that the minimization of the NAE loss function does not guarantee to
suppress OOD reconstruction

o Wasserstein Normalized AEs (WNAE) is an improvement over NAEs, directly
minimizing the Wasserstein distance to between the AE probability distribution and
that of the training data, solving the aforementioned issues, and can be trained in a fully
signal-agnostic fashion

o The method proposed in this talk is general and not limited to the search for SVJs!
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o Input features to the AE are 8 jet substructure variables (CMS simulation)
o Normalized using quantile transformation to a normal distribution
o AE architecture: fully connected NN with 10, 10, 6, 10, 10 neurons
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Energy-based models

Energy-based models (EMBs)
o EBMs are models where the probability is defined through the Boltzmann distribution
o Let 6 denote the model parameters

o The model probability pgy is defined from the energy Fjy

po(z) = Qigexp<—Ee<m>/T> (1)

where the normalization constant €y is

= [ exp (~Eo(a)/T) do 2)
o The EBM loss for a training example z is the negative log-likelihood:
Lo(z) = —logpy(z) = Eo(z)/T + log Qg 3)
o The gradient of the EBM loss is thus:
VoLg(z) = VgEo(x) —Eyrrp, [VoFo(z)] 4)
o The expectation value over the training dataset, with probability pqata is:

Eznpaata [VoLo(z)] = Eznpaata [VoEg(x)] — Ex’~p9 [VeEG(zl)] (5)
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Gradient of partition function

e Calculating the partition function €y is in general intractable

e Can be circumvented when using gradient descent to find the optimum, since the
gradient of the partition function can be calculated:

1
VologQy = Q—BVQQQ

— Qie/Bd.Tvg exp(—FEg(x))

= Qig‘/deexp(fEe(fL"))ve(*EO(x))

- / dxgiexm—Ee(x))ve(—Ee(w))
B )

:/Bdmpg(m)VQ(*Eo(x))

= 7]Ez~p9 (z) [VQEG (93)]7
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Principle of MCMC (Langevin Monte Carlo)

Let p be a probability distribution on R¢

o Consider x¢ a random initial set of n points in R%

‘With the update rule:
i1 =2t + AViog (p(x)) + V2 - X - e

where ¢; is a sample of n points drawn from a multivariate normal distribution on R%

Let p: denote the probability distribution of x;

o In the limit ¢ — oo, p: approaches a stationary distribution peo, and poc = p

Initial distribution Gradient + noise Step 1 Step N
.. .O L] L) { ]
‘o9 ) @ o ° ’
[ ] (] °
[ J [
[ ] 2 "
° o |0 ° P ) L °
° . ° ¢ L e ° o°
[ J [ [ ] °
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Understanding the MCMC hyper-parameters

@ Recall the MCMC equation:
T =a; — AVzEy(z]) + o€ e~N(0,1I)
o A theoretically motivated choice! for the MCMC hyper-parameters is:
2.\ =02

o The MCMC is run on every batch: in practice, for training in a reasonable amount of
time, the MCMC is rather short

o To speed up the convergence of the MCMC, the temperature 7" is introduced:
/ / >\ /
le:xi—?VﬁEg(zi)-i-ae e~N(0,I)

o Tweaking the gradient step size can be seen as adjusting the temperature T':
the strength of the gradient term is increased for T' < 1

o The parameter space where o and T are set independently, with 7' < 1 and A = 02/2 is
in theory a good region

e T and o chosen so that large AUC is obtained under the condition that the EMD is low
and the MCMC samples 1D distributions match that of data

1For an infinitely long chain, see backup slide 5
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MCMC initialization

MCMC initialization:
e In theory, MCMC convergence independent on the initial point

e However, in practice with short chain, initialization is crucial

Several commonly used initialization algorithms of the MCMC:
o Contrastive Divergence! (CD)
e Persistent CD? (PCD)

CcD?
o Initial distribution from training data

o Re-initialization after each parameter update (i.e. epoch)

PCD*
e Random initial distribution for first MCMC
o The model changes only slightly during parameter update

o Thus, for subsequent chains, initialize chain at the state in which it ended for the
previous model

o Possibility to randomly re-initialize a small fraction of the samples

INeural Comput 2002; 14 (8) 3Tllustration in backup slide 8
2pCcD paper 41llustration in backup slide 9
an Eble WNAE for S 1 in CMS 3


https://doi.org/10.1162/089976602760128018
https://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf

Principle of CD

Example of a failure mode of CD: High Training d .
probability mode far from training data di alr}]l)ng- a?a
distribution is not sampled istribution:

Initial distribution

Step 1 Step 2 Step N
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Principle of PCD

Initial distribution Step 1 Step 2 Step N
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On-Manifold Initialization

Tailored MCMC initialization algorithm for AEs:
o CD and PCD have failure modes

o CD failure mode: spurious low reconstruction error phase-space far from the training
dataset

e PCD failure mode: MCMC chains very correlated, spurious low reconstruction error
phase-space can be missed

- Tailored algorithm for AE: On-Manifold Initialization (OMI) [arXiv:2105.05735]
e Run a first MCMC in the latent space to generate samples lying near the decoder
manifold
o Use them as initial points for the usual MCMC

Initial point of
the latent chain

N L
Latent space Z

—0
Decoder Manifold | f2(@) | [On-manifci!d Initializatio:l | _ -4 Langevin MC
Features space X/ . + «,
ad TTe-al L Negative sample
JPtas =~ to compute
Initial point of L-7 negative energy

the langevin MC
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MCMC in Normalized Autoencoder (NAE)

Loss
Ly = Em"’pdata [E9 (I)] - E:I:'Np() [EQ (:I;,)]
positive energy E negative energy F_

Positive energy
e Simply the reconstruction error over the training dataset

o Take SM jets and compute the reconstruction error!

Negative energy
@ Reconstruction error of the “negative samples” z’ from the probability distribution pg
o Need to sample from the model to get the “negative samples”
- Monte Carlo Markov Chain (MCMC) employed

MCMC
o Start from an initial point x,
e Run n Langevin MCMC steps:
wiy =a; — A VaEg(x)) + oe e~N(0,I)
drift diffusion

/( ()

o Repeat with several points xoj), the negative samples are the z
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NAE with “logcosh” loss - Negative samples histograms

o Can visualize negative samples for individual input features
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Minimizing the Wasserstein distance

o WNAE loss function:
Lo(x) = inf E Ml = 2
(=) Yel(paataps) ) i ol

o Differentiable implementation of the Wasserstein distance from POT

e The dependency on 0 enters in the sampling of the negative samples z’ ~ py:

w1 = x; — VaEy(z7) + e

In PyTorch jargon, need to keep track of two separate computational graphs:
o MCMC step: gradient wrt the input feature space, to compute Vg Ey (z’e l)
o Backpropagation step: gradient wrt the NN weights 0, to compute VgLy:

Ly(x) = inf E(y oyen |z — 24
o(@) Y€ (Paata,Po) (@l oll

an Eble WNAE for SV



	Appendix

