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Why signal-agnostic searches for new physics in HEP?

What Dark Matter (DM) is:

In practice: Anything that’s not described by the Standard Model of Particle Physics

Theoretically: Pick your poison! Supersymmetry (SUSY), Weakly Interacting Massive
Particles (WIMPs)...

What if we are not searching at the right place?

DM
SUSY

WIMP

Axion
HNL
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Why signal-agnostic searches for new physics in HEP?

Traditional search

Targets a specific new
physics signal model

Maximum sensitivity to
this signal

Potentially very little
sensitivity to different
experimental signatures

Anomaly detection

Makes no/few assumptions
about the new physics

Smaller sensitivity
compared to traditional
search for the target signal

Sensitive to a wide range of
new physics scenarii!Two Types of Anomaly Detection

Finding 
Overdensities 

[Resonant]

Outlier Detection 
[Nonresonant]

[1805.02664, 1806.02350, 1902.02634, 1912.12155, 2001.05001, 2001.04990, 2012.11638, 2106.10164, 
2109.00546, 2202.00686, 2203.09470, 2208.05484, 2210.14924, 2212.11285, ….]

[1807.10261, 1808.08979, 1808.08992, 1811.10276, 1903.02032, 1912.10625, 2004.09360, 2006.05432, 
2007.01850, 2007.15830, 2010.07940, 2102.08390, 2104.09051, 2105.07988, 2105.10427, 2105.09274, 
2106.10164, 2108,03986, 2109.10919, 2110.06948, 2112.04958, 2203.01343,2206.14225, 2304.03836, … ]

• Searching for unique 
or unexpected events 

• In HEP, this is the tails 
of distributions

• Analagous to the 
traditional bump hunt

[1207.7214]
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DM as a strongly coupled dark sector

Hidden Valley [arXiv:hep-ph/0604261] with new particles and forces form the dark sector

Strongly coupled dark sector

➔ New confining SU(N) force, dark QCD, and dark quarks

Portal between the SM and dark sectors via a heavy mediator

Considering non-resonant production of dark quarks via t-channel mediator

SM Sector Dark Sector
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Production of semivisible jets (SVJs) and model parameters

Dark quarks hadronize in the dark sector

Unstable dark hadrons promptly decay to
SM quarks

SM quarks hadronize in the SM sector

➔ Semivisible jets (SVJs)

[arXiv:1503.00009, arXiv:1707.05326]

➔ Different jet substructure
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in associ-
ation with a gluon. Figure taken from ref. [10].

that in this set-up all dark pions are stable on cosmological scales and therefore constitute a
potential DM candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)′ gauge
boson Z ′ with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z ′ and SM gauge bosons, are assumed to
be suppressed. In analogy to γ-ρ0 mixing in the SM, the Z ′ mixes with the ρ0

d, which induces
small couplings between the ρ0

d and SM quarks and renders the ρ0
d unstable. For mρd

< 2mπd

the ρ±d mesons can only decay into three-body final states via an off-shell Z ′, which makes
them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ρ0

d mesons decay
promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = mρd

.
We note in passing that the assumption mρd

< 2mπd
can be motivated from cosmology,

because the relic density of dark pions is determined by the rate of the annihilation process
πdπd → ρdρd, which becomes Boltzmann suppressed at low temperatures. Provided mπd

and mρd
are sufficiently close, the observed relic abundance can be reproduced even for weak

portal interactions and/or heavy Z ′ bosons, which makes it possible to satisfy constraints
from direct detection experiments. For example, for mπd

= 4 GeV and gd = 1 one requires
mρd

≈ 5 GeV, while the Z ′ mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the Z ′

(possibly in association with SM particles) and its subsequent decays into either SM or dark
quarks. While the former case leads to di-jet resonances that can be easily reconstructed,

2We note that for small Z′ couplings the ρ0
d can be long-lived and lead to displaced vertices at the LHC. The

corresponding production cross sections can nevertheless be sufficiently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced
vertices for dark sector models is subject of separate work in progress.

4

Model parameters:

mΦ: Mass of the mediator

Masses of all dark hadrons fixed to
20 GeV

rinv: Jet invisible fraction
Effective parameter
Branching ratio DM → qq̄

rinv =

〈
Number of stable dark hadrons

Number of dark hadrons

〉
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Anomaly detection to search for SVJs

The details of the shower in the dark sector depend on many unknown
parameters, e.g.:

Number of dark colors

Number of dark flavors

Masses of the dark hadrons

Dark hadronization scale
?

➔ SVJ substructure very

model-dependent

➔ Large parameter space to

cover

➔ Unsupervised taggers

complementary to

supervised strategies to

explore the parameter space
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in associ-
ation with a gluon. Figure taken from ref. [10].

that in this set-up all dark pions are stable on cosmological scales and therefore constitute a
potential DM candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)′ gauge
boson Z ′ with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z ′ and SM gauge bosons, are assumed to
be suppressed. In analogy to γ-ρ0 mixing in the SM, the Z ′ mixes with the ρ0

d, which induces
small couplings between the ρ0

d and SM quarks and renders the ρ0
d unstable. For mρd

< 2mπd

the ρ±d mesons can only decay into three-body final states via an off-shell Z ′, which makes
them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ρ0

d mesons decay
promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = mρd

.
We note in passing that the assumption mρd

< 2mπd
can be motivated from cosmology,

because the relic density of dark pions is determined by the rate of the annihilation process
πdπd → ρdρd, which becomes Boltzmann suppressed at low temperatures. Provided mπd

and mρd
are sufficiently close, the observed relic abundance can be reproduced even for weak

portal interactions and/or heavy Z ′ bosons, which makes it possible to satisfy constraints
from direct detection experiments. For example, for mπd

= 4 GeV and gd = 1 one requires
mρd

≈ 5 GeV, while the Z ′ mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the Z ′

(possibly in association with SM particles) and its subsequent decays into either SM or dark
quarks. While the former case leads to di-jet resonances that can be easily reconstructed,

2We note that for small Z′ couplings the ρ0
d can be long-lived and lead to displaced vertices at the LHC. The

corresponding production cross sections can nevertheless be sufficiently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced
vertices for dark sector models is subject of separate work in progress.

4
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Anomaly detection with autoencoders (AE)

AEs are trained to minimize the
reconstruction error (e.g. MSE) between
input and output:

L(x) = ||g(f(x))− x||

➔ Aim: that examples out of the training
distribution, i.e. anomalies, have a higher
reconstruction error

➔ Trained on SM data, AEs can perform
signal-agnostic searches for new physics
[arXiv:1808.08979, arXiv:1808.08992]

➔ Will use interchangeably:

“training” and “background”

“anomaly” and “signal”

Input 
features

Reconstructed  
features

Latent space
Encoded features

Encoder f Decoder g

Bottleneck

Training examples
Examples out of 
training distribution

N
um

be
r o

f 
ex

am
pl

es
 

Reconstruction error
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Backgrounds

SVJ experimental signature:

Missing transverse momentum (̸ET)
aligned with a jet

̸ET =
∣∣∣∣∣∣∑ p⃗T

∣∣∣∣∣∣

SM hadrons
Stable dark hadrons

rinv = 1rinv = 0 0 < rinv < 1

�ET

�ET
q ⌘d

�ET ⇡ 0

Instrumental ̸ET

Mostly QCD: artificial missing transverse energy ̸ET
aligned with jet from jet energy mismeasurement

Autoencoder-based anomaly detection proved to work
well against QCD jets [arXiv:2112.02864]

Genuine ̸ET

tt̄, W + jets, ... with W (→ lν)

Lost lepton, genuine ̸ET from neutrino

More challenging for anomaly detection

Annapaola de Cosa 

Backgrounds

11

QCD 
• Artificial pTmiss from jet 

mis-measurements 
aligned to jet 

• Large cross section

Δφ

SM jet SM jet

 
• AK8 pT>200 GeV → boosted tops 

• One lepton lost/not identified 

• pTmiss from ν aligned to jet

tt̄

Z(➝νν) + jets 
• Genuine pTmiss from ν 

• Most likely back to 
back to the jet

SM jet

ν

ν

SM jet

ν

e/μ

W(➝lν) + jets 
• Lost/not identified 

lepton or hadronic τ  

• Genuine pTmiss from ν, 
typically back to back 
to the jet

Z
W

σSMjet/σSVJ~ 109-1010

̸ET
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Input features and architecture

The different ML models presented in the following have the same architecture (fully
connected NN, 10-10-6-10-10 hidden neurons) and input features

They differ only by their loss function

Input features (quantile morphing to normal distribution), anti-kt R = 0.8 jets:

Axis major

Axis minor

Fist energy flow polynomial EFP1

The Cβ=0.5
2 energy correlation function

Transverse momentum dispersion pDT
Softdrop mass

2-subjettiness τ2

3-subjettiness τ3
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Axis minor
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Shortcoming of standard autoencoder

Training standard AE on simulated background tt̄ jets minimizing the MSE between
input and reconstructed features1

➔ When the background MSE is minimal, the AE reconstructs background and
signal jets equally well!

➔ The reconstruction error is not a good metric!

➔ Cannot optimize on AUC without introducing signal model dependence!
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1See CMS DP -2023/071
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The problem of out-of-distribution (OOD) reconstruction

Standard AEs are trained to minimize reco error in the background phase-space

but AEs are free to minimize reco error outside the background phase-space!
including the unknown signal phase-space...

➔ This is the problem of OOD reconstruction / “complexity bias”:

Full phase space

Low reconstruction 
error phase space

Training / background 
phase space

Anomaly / signal 
phase space

OOD 
reconstruction 
in the signal 
phase space

OOD
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The Normalized Autoencoder (NAE) paradigm

Ensure that the low reconstruction error probability distribution matches that
of the training data2

Define a probability distribution pθ so that regions
with low reco error Eθ have high probability

pθ(x) =
1

Ωθ
exp (−Eθ(x))

The loss is designed to learn pθ = pdata:

Lθ = Ex∼pdata [Eθ(x)]− Ex′∼pθ

[
Eθ(x

′)
]

positive energy E+ negative energy E−

MCMC to sample “negative samples” x′ from pθ and compute their reco error E−
Full phase-space

Low reconstruction error

Training / background data Anomalous / 
signal data

➔
Negative samples
Low reconstruction error

Full phase-space

Training / background data Anomalous / 
signal data

2NAE first introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225
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The naive fix

Modified default loss function, compared to arXiv:2105.05735, to:

prevent negative loss and the divergence of negative energy

minimize the positive energy while the energy difference is close to 03:

L = log (cosh (E+ − E−)) + αE+ α > 0, hyper-parameter4
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➔ Signal SVJ reconstruction is efficiently suppressed!

➔ How to define stopping condition in a fully signal-agnostic way?

3Relaxing this point, with L = log
(
cosh

(
E+ − E−

))
, the issue developed in next slides is still observed

4α = 0.001 in this case
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Wasserstein distance as optimal metric
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Wasserstein distance between x ∼ pdata
and x′ ∼ pθ (EMD) is a robust measure
of the distance between the background
and AE probability distributions

Direct measure of learning pθ = pdata
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Wasserstein distance versus energy difference
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Input feature space

Background 
phase space

Low reco error 
phase space

Signal    
phase space

Input feature space
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Low reco error 
phase space
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Illustration before collapse:

Background (positive) and NN
(negative) probability distributions
match

➔ Low EMD and low energy
difference between negative and
positive probability distributions

➔ Anomalies have large reco error

Illustration after collapse:

Large discrepancy between back-
ground and NN probability
distributions

➔ Large EMD but low energy
difference between negative and
positive probability distributions

➔ Anomalies are not distinguishable
from background
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Minimizing the Wasserstein distance

Wasserstein Normalized Autoencoder (WNAE) loss function (CMS PAS MLG-24-002):
Wasserstein distance between x ∼ pdata and x′ ∼ pθ

Lθ(x) = inf
γ∈Π(pdata,pθ)

E(x,x′)∼γ [∥x− x′
θ∥]

Anti-correlation between Wasserstein distance and AUC!

➔ Fully signal-agnostic training procedure: best epoch is epoch with minimal
Wasserstein distance!
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Learning the background probability

Epoch 1 vs Epoch 500
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Learning the background probability

Epoch 1 vs Epoch 500
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Wasserstein Normalized Autoencoder - Results

The WNAE achieves sensible improvement compared to the standard AE!
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Conclusions

Standard AEs are prone to out-of-distribution reconstruction because they are free to
minimize the reconstruction error outside the training phase space

Normalized AEs (NAE) propose a mechanism to ensure that the learned probability
distribution matches that of the training data

The minimization of the NAE loss function is unstable, and ad-hoc regularization is
employed to obtain a well-behave loss

Found that the minimization of the NAE loss function does not guarantee to
suppress OOD reconstruction

Wasserstein Normalized AEs (WNAE) is an improvement over NAEs, directly
minimizing the Wasserstein distance to between the AE probability distribution and
that of the training data, solving the aforementioned issues, and can be trained in a fully
signal-agnostic fashion

The method proposed in this talk is general and not limited to the search for SVJs!
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Input features

Input features to the AE are 8 jet substructure variables (CMS simulation)
Normalized using quantile transformation to a normal distribution
AE architecture: fully connected NN with 10, 10, 6, 10, 10 neurons
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Energy-based models

Energy-based models (EMBs)

EBMs are models where the probability is defined through the Boltzmann distribution

Let θ denote the model parameters

The model probability pθ is defined from the energy Eθ

pθ(x) =
1

Ωθ
exp (−Eθ(x)/T ) (1)

where the normalization constant Ωθ is

Ωθ =

∫
exp (−Eθ(x)/T ) dx (2)

The EBM loss for a training example x is the negative log-likelihood:

Lθ(x) = − log pθ(x) = Eθ(x)/T + logΩθ (3)

The gradient of the EBM loss is thus:

∇θLθ(x) = ∇θEθ(x)− Ex′∼pθ

[
∇θEθ(x

′)
]

(4)

The expectation value over the training dataset, with probability pdata is:

Ex∼pdata [∇θLθ(x)] = Ex∼pdata [∇θEθ(x)]− Ex′∼pθ

[
∇θEθ(x

′)
]

(5)
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Gradient of partition function

Calculating the partition function Ωθ is in general intractable

Can be circumvented when using gradient descent to find the optimum, since the
gradient of the partition function can be calculated:

∇θ log Ωθ =
1

Ωθ
∇θΩθ

=
1

Ωθ

∫
B
dx∇θ exp(−Eθ(x))

=
1

Ωθ

∫
B
dx exp(−Eθ(x))∇θ(−Eθ(x))

=

∫
B
dx

1

Ωθ
exp(−Eθ(x))∇θ(−Eθ(x))

=

∫
B
dxpθ(x)∇θ(−Eθ(x))

= −Ex∼pθ(x)
[∇θEθ(x)],
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Principle of MCMC (Langevin Monte Carlo)

Let p be a probability distribution on Rd

Consider x0 a random initial set of n points in Rd

With the update rule:

xt+1 = xt + λ∇ log (p(xt)) +
√
2 · λ · ϵt

where ϵt is a sample of n points drawn from a multivariate normal distribution on Rd

Let ρt denote the probability distribution of xt

In the limit t → ∞, ρt approaches a stationary distribution ρ∞, and ρ∞ = p

…

Initial distribution Gradient + noise Step 1 Step N

Chain
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Understanding the MCMC hyper-parameters

Recall the MCMC equation:

x′
i+1 = x′

i − λ∇xEθ(x
′
i) + σϵ ϵ ∼ N (0, I)

A theoretically motivated choice1 for the MCMC hyper-parameters is:

2 · λ = σ2

The MCMC is run on every batch: in practice, for training in a reasonable amount of
time, the MCMC is rather short

To speed up the convergence of the MCMC, the temperature T is introduced:

x′
i+1 = x′

i −
λ

T
∇xEθ(x

′
i) + σϵ ϵ ∼ N (0, I)

Tweaking the gradient step size can be seen as adjusting the temperature T :

the strength of the gradient term is increased for T < 1

The parameter space where σ and T are set independently, with T < 1 and λ = σ2/2 is
in theory a good region

T and σ chosen so that large AUC is obtained under the condition that the EMD is low
and the MCMC samples 1D distributions match that of data

1For an infinitely long chain, see backup slide 5
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MCMC initialization

MCMC initialization:

In theory, MCMC convergence independent on the initial point

However, in practice with short chain, initialization is crucial

Several commonly used initialization algorithms of the MCMC:

Contrastive Divergence1 (CD)

Persistent CD2 (PCD)

CD3

Initial distribution from training data

Re-initialization after each parameter update (i.e. epoch)

PCD4

Random initial distribution for first MCMC

The model changes only slightly during parameter update

Thus, for subsequent chains, initialize chain at the state in which it ended for the
previous model

Possibility to randomly re-initialize a small fraction of the samples

1Neural Comput 2002; 14 (8) 3Illustration in backup slide 8
2PCD paper 4Illustration in backup slide 9
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Principle of CD

Example of a failure mode of CD: High
probability mode far from training data
distribution is not sampled

Training data
distribution:

Background data 
distribution

…

Initial distribution Step 2 Step N

…

Initial distribution Step 2 Step N

Step 1

Step 1

Model 
parameter 

update

Chain i

Chain i+1
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Principle of PCD

…

Initial distribution Step 2 Step N

…

Initial distribution Step 2 Step N

Step 1

Step 1

Model 
parameter 

update

Chain i

Chain i+1
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On-Manifold Initialization

Tailored MCMC initialization algorithm for AEs:

CD and PCD have failure modes
CD failure mode: spurious low reconstruction error phase-space far from the training
dataset
PCD failure mode: MCMC chains very correlated, spurious low reconstruction error
phase-space can be missed

➔ Tailored algorithm for AE: On-Manifold Initialization (OMI) [arXiv:2105.05735]
Run a first MCMC in the latent space to generate samples lying near the decoder
manifold
Use them as initial points for the usual MCMC

131313Florian Eble                                                                                                                                                                                                      25/11/2022 13

 The two MCMC in OMI
● OMI is based on 2 MCMC

○ Latent MCMC: The goal is to find good initial distribution for the LMC (Langevin MC)
○ Features MCMC: The regular Langevin MCMC to sample “negative samples” and therefore 

compute the negative energy, initialized from the previous step

Figure adapted from the NAE paper

Langevin MC

Initial point of 
the latent chain

Initial point of 
the langevin MC

Negative sample 
to compute 
negative energy

Latent space

Features space
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MCMC in Normalized Autoencoder (NAE)

Loss
Lθ = Ex∼pdata [Eθ(x)]− Ex′∼pθ

[
Eθ(x

′)
]

positive energy E+ negative energy E−

Positive energy

Simply the reconstruction error over the training dataset

Take SM jets and compute the reconstruction error!

Negative energy

Reconstruction error of the “negative samples” x′ from the probability distribution pθ

Need to sample from the model to get the “negative samples”

➔ Monte Carlo Markov Chain (MCMC) employed

MCMC

Start from an initial point x′
0

Run n Langevin MCMC steps:

x′
i+1 = x′

i − λi∇xEθ(x
′
i) + σiϵ ϵ ∼ N (0, I)

drift diffusion

Repeat with several points x
′(j)
0 , the negative samples are the x

′(j)
n
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NAE with “logcosh” loss - Negative samples histograms

Can visualize negative samples for individual input features
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Histograms of positive, negative and
signal samples before the “phase-space

collapse”.
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Histograms of positive, negative and
signal samples after the “phase-space

collapse” (epoch 2200).
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Minimizing the Wasserstein distance

WNAE loss function:

Lθ(x) = inf
γ∈Π(pdata,pθ)

E(x,x′)∼γ [∥x− x′
θ∥]

Differentiable implementation of the Wasserstein distance from POT

The dependency on θ enters in the sampling of the negative samples x′ ∼ pθ:

x′
i+1 = x′

i −∇xEθ(x
′
i) + σϵ

In PyTorch jargon, need to keep track of two separate computational graphs:

MCMC step: gradient wrt the input feature space, to compute ∇xEθ(x
′
θ,i)

Backpropagation step: gradient wrt the NN weights θ, to compute ∇θLθ:

Lθ(x) = inf
γ∈Π(pdata,pθ)

E(x,x′)∼γ [∥x− x′
θ∥]
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