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Introduction
The last ~decade of BSM physics searches at ATLAS have mostly been motivated 
by specific theoretical models, using analysis selections optimised for a 
corresponding final state

Lack of discoveries for popular theories, and a broad choice of models, lead to 
desire for model independence
● Reinterpretation of existing results
● Presentation of generic limits in terms of cross-section x efficiency
● Simplified, generic models for summary plots

Inclusive searches for generic final states (e.g. di-jets) suffer from high 
backgrounds

Anomaly Detection (AD) is an alternative approach, that aims to make analysis 
selections sensitive to a variety of models while still suppressing background

Typically using Machine Learning (ML) methods, events are assessed for their 
similarity to expected events

Greater model-independence still comes from unsupervised techniques, where 
the ML system is trained on data rather than simulation

e.g. Yoran and Jingjing’s talks

https://agenda.infn.it/event/37093/contributions/234320/
https://agenda.infn.it/event/37093/contributions/234322/
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Supervised classifier – “classic ML”
All events have a set of features (x) and a label (y). The model is trained to 
produce the label y most appropriate for a given x

Neural Network (NN)

Features (x) Labels (y)

Tomato

Tomato

Tomato

Tomato

Carrot
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Unsupervised anomaly detection
The NN is simply trained to reproduce its input. Unfamiliar inputs will be 
reproduced less well, so comparing outputs to inputs gives anomaly score

Auto Encoder NN

Inputs (x) Outputs (y)

Compare

Poor reproduction = 
anomaly

Constriction forces 
learning of most 

important features
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Unsupervised anomaly detection
The NN is simply trained to reproduce its input. Unfamiliar inputs will be 
reproduced less well, so comparing outputs to inputs gives anomaly score

Auto Encoder NN

Inputs (x) Outputs (y)

Compare

Poor reproduction = 
anomaly

Constriction forces 
learning of most 

important features

Implies anomalies are rare – it won’t find something hiding in plain sight
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Anomaly detection
Some of the most important results in physics have come from noticing 
anomalies...



Anomalous event tagging
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Encoding features
Particle physics events aren’t naturally amenable to ML input formats, since we 
typically have “awkward arrays” – multidimensional data of variable lengths – 
rather than fixed-size flat arrays

The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

Nucl.Instrum.Meth.A 931 (2019) 92-99

https://doi.org/10.1016/j.nima.2019.04.031
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Encoding features – fixed size
The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

Choose particle flavours to include (e.g. jets, muons) and max multiplicity N

Nucl.Instrum.Meth.A 931 (2019) 92-99

Jets 1 N (e→ T ordered)

https://doi.org/10.1016/j.nima.2019.04.031
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Encoding features – fixed size
The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

● Elements above the diagonal are masses or mass combinations
● Elements below the diagonal are rapidities or rapidity differences
● Details in backup

Nucl.Instrum.Meth.A 931 (2019) 92-99

https://doi.org/10.1016/j.nima.2019.04.031
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RMM signatures
Different processes can give rise to distinctive patterns in the RMM, although 
these are strongly linked to particle multiplicity and corresponding sparsity of 
the matrix

Nucl.Instrum.Meth.A 931 (2019) 92-99

https://doi.org/10.1016/j.nima.2019.04.031
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RMM for anomaly detection (2024)
Use an RMM containing 10 light jets, 10 b-jets, 5 electrons, 5 muons and 5 
photons to perform a multi-channel anomaly search (trigger on single lepton)

Remove invariant mass observables for search to avoid biasing these spectra

Anomaly score is log(L), where L is the training loss L=|y-x|2

Phys.Rev.Lett. 132 (2024) 8, 081801

Inputs (x) Outputs (y)
40

0

20
0

40
0

80
0

Auto Encoder NN

RMM flattened to 
1287 element 

vector, outperforms 
convolutional 2D 

(V)AEs

80
0 

no
de

s

https://doi.org/10.1103/PhysRevLett.132.081801
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RMM for anomaly detection (2024)

Phys.Rev.Lett. 132 (2024) 8, 081801

Plot the anomaly 
score distribution 
for Run2 dataset, 
alongside example 
BSM signals
● One or more 

leptons with 
pT>60 GeV

● One or more 
jets with
pT>30 GeV

AE trained on 1% 
of full Run2 
dataset (140 fb-1)

Define three 
anomaly score 
thresholds 
corresponding to 
10, 1 and 0,1 pb 
cross-sections

https://doi.org/10.1103/PhysRevLett.132.081801
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RMM for anomaly detection (2024)

Phys.Rev.Lett. 132 (2024) 8, 081801

Plot the invariant 
masses that were 
excluded from  
the RMM earlier

Bump-hunt search 
for local excesses 
above a smooth, 
analytical 
function for the 
background

These plots are 
for the 10pb 
anomaly region: 
more stringent 
selections were 
found to be 
statistically-
limited

https://doi.org/10.1103/PhysRevLett.132.081801
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RMM for anomaly detection (2024)

Phys.Rev.Lett. 132 (2024) 8, 081801

Largest excesses 
in the m(j+μ) 
distribution at 1.2 
and 4.8 TeV

Assuming a zero-
width decay at 
these masses, 
local significances 
of 2.8 and 2.9σ

Event at
m(j+μ)=8 TeV is 
removed by more 
stringent muon ID

https://doi.org/10.1103/PhysRevLett.132.081801
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RMM for anomaly detection (2024)

Phys.Rev.Lett. 132 (2024) 8, 081801

Largest excesses 
in the m(j+μ) 
distribution at 1.2 
and 4.8 TeV

Assuming a zero-
width decay at 
these masses, 
local significances 
of 2.8 and 2.9σ

Calculated 
assuming a zero-
width decay

Results for a 15% 
width also shown 
(less significant)

Other channels in 
backup

https://doi.org/10.1103/PhysRevLett.132.081801
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RMM for anomaly detection (2024)

Phys.Rev.Lett. 132 (2024) 8, 081801

Sensitivity for the 
different example 
signals are shown 
for the 10pb 
anomaly score 
selection, as 
percentage 
improvement (ΔZ) 
over no anomaly 
score cut

Lower masses and 
more SM-like final 
states give worse 
performance, as 
you might expect

Other channels in 
backup

https://doi.org/10.1103/PhysRevLett.132.081801


Anomalous jet tagging
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Encoding features – variable size
Fixed-size RMMs must strike a balance between truncating event data, and 
sparsity. Even so, the loss term in training has a dependency on matrix content, 
and thus particle multiplicity

Recurrent Neural Networks (RNN) are designed to process variable-length data 
vectors as sequences, with an internal state affected by earlier steps in the 
sequence

We can use this approach to modify a standard (Variational) Auto Encoder...

JINST 16 (2021) 08, P08012

https://doi.org/10.1088/1748-0221/16/08/P08012
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Encoding features – variable size
… adding an RNN structure around it, creating a Variational Recurrent Neural 
Network (VRNN)

JINST 16 (2021) 08, P08012

https://doi.org/10.1088/1748-0221/16/08/P08012
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Encoding features – variable size
… adding an RNN structure around it, creating a Variational Recurrent Neural 
Network (VRNN)

JINST 16 (2021) 08, P08012

Internal state

https://doi.org/10.1088/1748-0221/16/08/P08012
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Encoding features – variable size
… adding an RNN structure around it, creating a Variational Recurrent Neural 
Network (VRNN)

JINST 16 (2021) 08, P08012

Internal state
input to decoder

Internal state
input to encoder

https://doi.org/10.1088/1748-0221/16/08/P08012
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Encoding features – variable size
… adding an RNN structure around it, creating a Variational Recurrent Neural 
Network (VRNN)

JINST 16 (2021) 08, P08012

Internal state updated 
from encoder and 

decoder

https://doi.org/10.1088/1748-0221/16/08/P08012
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Encoding features – jets
The VRNN is able to perform anomaly detection on sequential data of unknown 
length, in this case the 20 highest pT constituents of a jet as 4-vectors

Unlike a standard Auto Encoder, the ordering of the input is meaningful and has 
an effect on the performance

Identify subjets by ordering to maximise kt-distance between sequence steps
Jets are scaled to avoid mass-dependence (see backup)

JINST 16 (2021) 08, P08012

Boosted 2-prong decays 
(signal) versus QCD jets

https://doi.org/10.1088/1748-0221/16/08/P08012
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Anomalous jet tagging analysis
Using the VRNN, anomalous jets can be tagged within an event, rather than 
assigning an anomaly score to the event as a whole

Phys.Rev.D 108 (2023) 052009

Anomalous jet,
tagged with VRNN 
described before

Selecting events with at 
least two large-R jets
● m(JJ) > 1.3 TeV
● pT(J1) > 500 GeV
● One jet to be 

identified as H bb →
using NN classifier 
(supervised)

https://doi.org/10.1103/PhysRevD.108.052009
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Anomalous jet tagging analysis
Using the VRNN, anomalous jets can be tagged within an event, rather than 
assigning an anomaly score to the event as a whole

Phys.Rev.D 108 (2023) 052009

Selecting events with at 
least two large-R jets
● m(JJ) > 1.3 TeV
● pT(J1) > 500 GeV
● One jet to be 

identified as H bb →
using NN classifier 
(supervised)

Anomalous jet,
tagged with VRNN 
described before

see Neelam’s talk for the 
newer tagger, but this 
uses DL1r on subjets

https://doi.org/10.1103/PhysRevD.108.052009
https://agenda.infn.it/event/37093/contributions/234315/
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Analysis regions
Two variables are used to define the signal region: the mass of the H bb →
candidate jet, and the NN classifier score for that jet

Phys.Rev.D 108 (2023) 052009

Background modelling:
● Use NN (3 layers, 20 nodes) to 

predict event-level weights that 
will correct HSB0 data to 
reproduce HSB1

● Validate by comparing LSB0 
(corrected) with LSB1

● Apply to CR0

Event weighting uses properties of 
the H bb candidate jet (e.g. p→ T, η) 
and those of its sub-jets

https://doi.org/10.1103/PhysRevD.108.052009
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Analysis regions
Two variables are used to define the signal region: the mass of the H bb →
candidate jet, and the NN classifier score for that jet

Phys.Rev.D 108 (2023) 052009

Background modelling:
● Use NN (3 layers, 20 nodes) to 

predict event-level weights that 
will correct HSB0 data to 
reproduce HSB1

● Validate by comparing LSB0 
(corrected) with LSB1

● Apply to CR0

Event weighting uses properties of 
the H bb candidate jet (e.g. p→ T, η) 
and those of its sub-jets

Background template extrapolated from sidebands

https://doi.org/10.1103/PhysRevD.108.052009
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Results
Large space of potential m(Y) and m(X) values searched, looking for excesses 
above the predicted background

Phys.Rev.D 108 (2023) 052009

https://doi.org/10.1103/PhysRevD.108.052009
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Results
Largest single excess has a global significance of 1.4σ once the trials factor from 
all these bins is accounted for

Phys.Rev.D 108 (2023) 052009

https://doi.org/10.1103/PhysRevD.108.052009
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Anomalous jet tagging effectiveness
Comparing the anomaly scores for data and a variety of potential signal models, 
we see modest discriminating power: the chosen working point of score > 0.5 
gives approximately 25% improved S:B ratio compared to an inclusive selection

By way of a comparison, two other versions of the analysis were performed, 
replacing the anomalous jet tag with either a large-R jet with D2 < 1.2, or two 
small-R resolved jets

Phys.Rev.D 108 (2023) 052009

https://doi.org/10.1103/PhysRevD.108.052009
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Anomalous jet tagging effectiveness

Phys.Rev.D 108 (2023) 052009

For the different 
signal models shown, 
the anomaly-tagging 
approach is 
approximately 
equivalent to finding 
substructured large 
jets D2 < 1.2

Note the Dark Jets 
signal though – the 
anomaly detection 
method is significantly 
better (order of 
magnitude) for this 
unusual final state, 
while remaining 
competitive in other 
channels

https://doi.org/10.1103/PhysRevD.108.052009


33

Anomalous jet tagging effectiveness

Phys.Rev.D 108 (2023) 052009

For the different 
signal models shown, 
the anomaly-tagging 
approach is 
approximately 
equivalent to finding 
substructured large 
jets D2 < 1.2

Note the Dark Jets 
signal though – the 
anomaly detection 
method is significantly 
better (order of 
magnitude) for this 
unusual final state, 
while remaining 
competitive in other 
channels

Remember the tagger has never been 
trained to recognise any of these models

https://doi.org/10.1103/PhysRevD.108.052009
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Summary
Anomaly detection is a promising technique, allowing for identification of 
unusual signatures without targeting a specific new physics model

Improved sensitivity over inclusive searches in the same channels

Unsupervised training avoids modelling uncertainties in backgrounds, particularly 
for important LHC processes like QCD-multijets

Full event-level information can be summarised in fixed-size structures like the 
RMM, allowing searches across many channels, with anomaly scoring provided by 
an Auto Encoder NN

Anomalous, substructured jets can be identified using a VRNN, taking an ordered 
sequence of jet constituents as its input
● Comparable performance to existing substructure variables
● Additional sensitivity, e.g. semi-visible signatures from Dark Jets

No significant excesses discovered, but these techniques show plenty of room for 
improvement (e.g. only 25% sensitivity improvement for VRNN so far)

Looking forward to more Run-3 data, and HL-LHC!



BACKUP
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Encoding features – fixed size
The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

Choose particle flavours to include (e.g. jets, muons) and max multiplicity N

Nucl.Instrum.Meth.A 931 (2019) 92-99

Muons 1 N →  (eT ordered)

https://doi.org/10.1016/j.nima.2019.04.031
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Encoding features – fixed size
The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

Diagonal components are (missing) transverse energies, or differences: 

Nucl.Instrum.Meth.A 931 (2019) 92-99

https://doi.org/10.1016/j.nima.2019.04.031
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Encoding features – fixed size
The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

First row characterises decays for one observed particle and one invisible

Nucl.Instrum.Meth.A 931 (2019) 92-99

https://doi.org/10.1016/j.nima.2019.04.031
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Encoding features – fixed size
The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

Other elements above the diagonal are two-particle invariant masses

Nucl.Instrum.Meth.A 931 (2019) 92-99

https://doi.org/10.1016/j.nima.2019.04.031
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Encoding features – fixed size
The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

First column is a function of particle rapidities, scaling them to range 0-1

Nucl.Instrum.Meth.A 931 (2019) 92-99

https://doi.org/10.1016/j.nima.2019.04.031
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Encoding features – fixed size
The Rapidity Mass Matrix (RMM) is a structure that encodes particle properties 
and two-particle correlations into a fixed-size matrix suitable for ML

Other elements below the diagonal are functions of two-particle Δ-rapidity

Nucl.Instrum.Meth.A 931 (2019) 92-99

https://doi.org/10.1016/j.nima.2019.04.031
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Encoding features – jets
To avoid simple correlation of anomaly score with jet mass, jets are pre-
processed
● Rescale each jet to the same mass
● Boost each jet to the same energy
● Rotate each jet to the same orientation in η, φ

JINST 16 (2021) 08, P08012

https://doi.org/10.1088/1748-0221/16/08/P08012
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RMM for anomaly detection (2024)

Phys.Rev.Lett. 132 (2024) 8, 081801

Largest excesses 
in the m(j+μ) 
distribution at 1.2 
and 4.8 TeV

Assuming a zero-
width decay at 
these masses, 
local significances 
of 2.8 and 2.9σ

Event at
m(j+μ)=8 TeV is 
removed by more 
stringent muon ID

https://doi.org/10.1103/PhysRevLett.132.081801
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RMM for anomaly detection (2024)

Phys.Rev.Lett. 132 (2024) 8, 081801

Improvements in 
sensitivity for the 
different example 
signals are shown 
for the 10pb 
anomaly score 
selection, 
compared to no 
anomaly score cut

Calculated by 
counting events 
within 1σ of BSM 
particle mass

Lower masses and 
more SM-like final 
states give worse 
performance, as 
you might expect

https://doi.org/10.1103/PhysRevLett.132.081801
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RMM for anomaly detection (2024)

Phys.Rev.Lett. 132 (2024) 8, 081801

(1) charged Higgs boson
production in association with a top quark, tbH+ with
H+  t , with the mass of H→ b̄ + between 0.4 TeV and 2 TeV
with a varying step size. All top decays are enabled;
(2) a Kaluza-Klein gauge boson, WKK, with the SM W
boson and a radion  that decays into two gluons, with theϕ
mass of WKK between 0.5 TeV and 6 TeV, and the mass
difference of WKK and the radion being 0.25 TeV;
(3) a model with a Z0 boson and composite SU(2)L fermion
doublets that breaks lepton-flavor universality (“composite
lepton”), Z0  El, with the Z0 boson mass of 0.5–4 TeV→
and various mass hypotheses for the composite lepton E
decaying to Zl with Z  q  [50];→ q̄
(4) the sequential standard model (SSM) W’  WZ’  lνq , with the mass→ → q̄
of the W’ boson ranging from 0.7 TeV to 6.2 TeV with a
varying step size and the mass difference of the W’ and Z’
bosons being 0.25 TeV;
(5) a simplified dark-matter (DM) model Z’  q , with an axial-vector mediator Z’ → q̄
boson whose mass ranges between 0.5 TeV and 6 TeV with a varying step size, 
where one of the quarks radiates a W boson which decays into lν

https://doi.org/10.1103/PhysRevLett.132.081801
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