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Background and Motivation

Samples and Simulation

Conclusion and Future Work

= Supersymmetry (SUSY) restores symmetry between fermions
and bosons.

= SUSY introduces new superpartners of SM particles.
= Spins of partner SUSY and SM particles differ by 1/2.
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Figure 1. A Supersymmetric Standard Model (SSM).

= SUSY models can simultaneously address:

= Dark matter (DM) relic density.
= [he gauge hierarchy problem.
= Higgs boson mass.

Experimental Constraints

= ATLAS and CMS have conducted various SUSY searches.

= Bounds on the colored SUSY sector exclude at 95% CL:

= Gluinos g up to 2.31 TeV.
= Stopstup to 1.25 TeV
= Shbottoms b up to 1.24 TeV.

» Bounds on the electroweak sector are more relaxed:
= Charginos X7 and neutralinos X1 Up to 950 GeV.

= Since these bounds are model-dependent, we consider
charginos and neutralinos down to 200 GeV.

Vector Boson Fusion (VBF)

Figure 2. Representative Feynman diagram for a VBF process.

= A quark from each LHC proton radiates a vector boson.
= These bosons fuse to produce a particle e.g. a Higgs.

= The quarks are minimally deflected from their initial
directions.

= Leading to energetic jets in the forward direction.
= These jets have large mass and are in opposite hemispheres.

Proposed Analysis Strategy
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Figure 4. Signal production cross-section as a function of the X3 and ¥ masses.

= Samples are produced with the event generator MadGraph5.
* Pythia8 is used for parton showers and hadronization.

= To ensure VBF production, the SUSY colored sector is decoupled.
* Further, generator-level cuts of |An(j7)| > 3.5 and m(j7) > 200 GeV

are applied to suppress non-VBF contributions.
* We define Am = m(x3) — m(x}) and fix Am = 50.

= With M = m(X3) = m(X{), we let M € {200, 300, ... , 1000} GeV.

= To ensure sufficient statistics, 10M events are simulated.

* The event selection criteria is: > 1¢ with ppr > 5 GeV and |n| < 2.5.

= All leptons must pass ID and isolation criteria.

Analysis using Machine Learning

Our analysis strategy can extend LHC constraints to X3 and 5{%
masses at a:

» > 50 signal significance for masses up to 660 (520) GeV.
= > 30 signal significance for masses up to 770 (620) GeV.
* > 95% confidence level for masses up to 880 (750) GeV.

With an integrated luminosity of 3000 (150) fb—L.

= As such, we advocate for an experimental search using our
methodology at ATLAS and CMS.

Appendix: Efficiencies and Uncertainties

= MadGraph and Pythia do not consider detector response.

= For example, light-jet identification efficiency is around 80%.
* \We consider these effects as an ¢ factor.

= So, for a final state with dijets and 1 muon, we have ¢ ~ 0.61.

Systematic uncertainties are taken into account as follows:

= 3% on the CMS measurement of Liqt.
= 2-5% in jet energy scale uncertainties.

= 1-2% shape-related in the BDT distribution.
= 5-10% in the signal and background predictions.

Appendix: Kinematic Distributions

Figure 3. Feymnann diagram for our signal. All chargino and neutralino
combinations are considered, thus all lepton multiplicities.

= The R-parity conserving MSSM is probed for this study.

* We define ewkino = {X{, X7, X1> Xo -

* The following as exclusive process Is considered as signal:

pp — ewkino ewkino j7 (1)

= The LSP XV is purely bino; the NLSPs X7~ and X are purely
wino and mass-degenerate.

A~ A A

= The sleptons (e, i, 7) are left-handed, mass-degenerate, and
heavier than the X7 and XY ».

= As such, the branching fraction ratios are:

B(S{]—L% ;z?wi»*):1 and 5(558% 5592*):1 (2)

= The only relevant SM backgrounds are pp — V + jets,
pp — V'V 344, and pp — tt with semi-leptonic decay.

= The VBF jet topology massively mitigates SM backgrounds.

Signal Significance
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Figure 5. Signal significance as a function of the X3 and x5~ masses.

= Signal and background events are combined for training.

= A boosted decision tree (BDT) is trained for signal-background
discrimination (binary classification).

= \We proceed with the BDT's predictions for yet-unseen data.
= The BDT output distributions are normalized to:

N=CLi-0-c

1000

(3)

Where Lint is the integrated luminosity, o is the cross-section, and ¢ is

the efficiency factor.

= A bin-by-bin calculation is used to compute signal significance:

G 2 SiWj
\/Z (s +b¢)w?+ﬁ22w% (822 +b22)

(4)

Where s; and b; are the number of signal and background events in the
it bin, 3 is the systematic uncertainty, and w; is the weight of the jth

bin defined as:

Compressed Mass Spectrum Scenario

()

= The mass gap between the LSP and the NSLPs is small.
= This Is the so-called compressed spectrum scenario.

* These scenarios have been challenging experimentally.
= Soft decay products that are challenging to detect.

= \VBF and machine learning significantly alleviate this problem.
= The choice of AM = 50 is motivated by the fact that it is:

= Large enough such that ¥3 and X7 are not long-lived.
= Small enough to obtain on-mass shell W*/Z* decay.
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Figure 6. Dijet invariant mass distributions for a M = 800 GeV signal event
and relevant SM backgrounds.
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Figure /. Leading jet transverse momentum distributions for a M = 800 GeV
signal event and relevant SM backgrounds.
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Appendix: ML Model Performance
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Figure 8. Receiver operating characteristic curve of the BDT for three signals.
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