

16th International Workshop on Boosted Object Phenomenology, Reconstruction, Measurements, and Searches at Colliders (BOOST 2024)

Genova, Italy, 29 July - 2 August 2024 **Matt LeBlanc (Brown University)**

BROWN

16th International Workshop on Boosted Objects Phenomenology

At the LHC, we can study many processes

At the LHC, we can study many processes at many scales ...

e.g. top pairs

At the LHC, we can study many processes at many scales ...

Matt LeBlanc (Brown) — Experimental BOOST Camp — BOOST 2024 @ Università di Genova — Slide 4

(Let's boost.)

Today's map

• **Detectors**

- ATLAS, CMS
 - Tracking detectors, calorimeters
 - Pile-up
 - Particle Flow
- ALICE
 - Heavy ions concepts (Centrality, RAA)
- DIS: H1 (HERA), EPIC (EIC)
- Analysis techniques
 - Tagging
 - Unfolding ullet
- Selected topics, some points might seem obvious to you — goal is for everyone to learn something.

Genoese map circa 1457, pre-Columbus, Caboto

Today's map

• **Detectors**

- ATLAS, CMS
 - Tracking detectors, calorimeters
 - Pile-up
 - Particle Flow
- ALICE
 - Heavy ions concepts (Centrality, RAA)
- DIS: H1 (HERA), EPIC (EIC) ●
- Analysis techniques
 - Tagging
 - Unfolding ullet
- Selected topics, some points might seem obvious to you — goal is for everyone to learn something.

Genoese map circa 1457, pre-Columbus, Caboto

(Halifax 1997)

Monument in Fleming Park (Halifax, Nova Scotia)

Detectors + Reconstruction

Detectors + Reconstruction

(Aiming to clarify some fundamentals earlier in the conference this year.)

heory Intro Berkeley, 2023

13.6 TeV Run 3 pp centre-of-mass energy
5.02 TeV Run 3 Pb+Pb sqrt(s)
1 billion collisions per-second (40 MHz)
1.2E11 nominal protons per-bunch
2808 proton bunches per-beam
1232 superconducting dipole magnets
392 superconducting quadrupoles

LHCb-

SUISSE

FRANCE

CMS

maile the second the main and

SPS 7 km

13.6 TeV Run 3 pp centre-of-mass energy
5.02 TeV Run 3 Pb+Pb sqrt(s)
1 billion collisions per-second (40 MHz)
1.2E11 nominal protons per-bunch
2808 proton bunches per-beam
1232 superconducting dipole magnets
392 superconducting quadrupoles

HCb

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

CMS

CMS DETECTOR

Overall diameter : 15.0 m Overall length : 28.7 m Magnetic field : 3.8 T

: 14,000 tonne

Total weight

STEEL RETURN YOKE

2.500 tonne:

SILICON TRACKERS Pixel (100x150 μm²) ~1.9 m² ~124M channels Microstrips (80–180 μm) ~200 m² ~9.6M channels

> SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000 A

> > MUON CHAMBERS

rrel: 250 Drift Tube, 480 Resistive Plate Chambers dcaps: 540 Cathode Strip, 576 Resistive Plate Cha

PRESHOWER

licon strips $\sim 16 \text{ m}^2 \sim 137.000 \text{ chann}$

ORWARD CALORIMETER

SUISSE

FRANCE

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

CFRN Mevrin

PS 7 km

13.6 TeV Run 3 pp centre-of-mass energy
5.02 TeV Run 3 Pb+Pb sqrt(s)
1 billion collisions per-second (40 MHz)
1.2E11 nominal protons per-bunch
2808 proton bunches per-beam
1232 superconducting dipole magnets
392 superconducting quadrupoles

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

CMS

CMS DETECTOR

Overall diameter : 15.0 m Overall length : 28.7 m Magnetic field : 3.8 T

: 14,000 tonnes

Total weight

STEEL RETURN YOKE

12.500 tonne:

SILICON TRACKERS Pixel (100x150 μm²) ~1.9 m² ~124M channels Microstrips (80–180 μm) ~200 m² ~9.6M channels

> SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000 A

> > MUON CHAMBERS

rrel: 250 Drift Tube, 480 Resistive Plate Chambers dcaps: 540 Cathode Strip, 576 Resistive Plate Cham

PRESHOWER

licon strips $\sim 16 \text{ m}^2 \sim 137.000 \text{ channe}$

ORWARD CALORIMETER

SUISSE

FRANCE

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

SPS 7 km

a.	ITS SPD (Pixel)
h	ITS SDD (Drift)
р. С	ITS SSD (Strin)
с. d	V0 and T0
u.	
e.	FMD

CMS & ATLAS

🎵 ... are two of a kind / looking for whatever new particles they can find. 🎵

- General purpose detectors, similar design goals (discover Higgs + broad BSM sensitivity).
 - Implementations quite different in terms of technologies:

	ATLAS	CMS
Tracker	Silicon+Straw Tube	All-Silicon
ECal (Barrel)	Lead+LAr Sampling, 3 longitudinal segments + Presampler	PbWO4 Crystal Homogeneous + Preshower
HCal (Barrel)	Fe+Scintillators Sampling, 3 readout depths	Brass+Scintilators Sampling, Run 2: 3 readout depths Run 3+: 7 readout depths
Muons	Drift tubes, RPCs, sTGCs, MMs	Drift tubes, RPCs, CSCs, GEMs
Magnetic fields	2 T Solenoidal 2-6 Tm Toroidal	3.8 T Solenoid

CMS & ATLAS: Segmentation

P. Loch @ UniGe 2017, <u>https://dpnc.unige.ch/seminaire/talks/loch.pdf</u>

- Longitudinal segmentation of calorimeters important for JSS reco at LHC.
 - Reconstruct kinematics & structure while reading out less volume:
 - Less electronics/detector noise
 - Less **pile-up** (next slide)
 - Better signal calibration shapes (EM/HAD) ATLAS Eur. Phys. J. C 77 (2017) 490, <u>P. Loch @ H1, 1992</u>

"Pile-up" \rightarrow uncorrelated, additional *pp* collisions in same bunch-crossing as signal process.

Pileup CMS, <u>JINST 15 (2020) P09018</u> ATLAS, Eur. Phys. J. C 81 (2021) 334

- Uncorrelated pp interactions that occur in the same bunch-crossing as the 'hard scattering' of interest
 - Effect on hadronic objects pronounced:
 - Jets have large catchment area
 - JSS sensitive to soft radiation
 - MET requires balanced energy flow
 - Spurious jets! (uncorrelated w/ signal of interest)
- Modern approach: mitigate bit-by-bit, at each step of reconstruction.
 - Constituent level (e.g. PUPPI, CS+SK)
 - Jet level (e.g. Soft-Drop grooming)

Pileup CMS, JINST 15 (2020) P09018 ATLAS, Eur. Phys. J. C 81 (2021) 334

- Uncorrelated pp interactions that occur in the same bunch-crossing as the 'hard scattering' of interest
 - Effect on hadronic objects pronounced:
 - Jets have large catchment area
 - JSS sensitive to soft radiation
 - MET requires balanced energy flow
 - Spurious jets! (uncorrelated w/ signal of interest)
- Modern approach: mitigate bit-by-bit, at each step of reconstruction.
 - Constituent level (e.g. PUPPI, CS+SK) lacksquare
 - Jet level (e.g. Soft-Drop grooming)

CMS & ATLAS : Particle Flow

Calorimeter

- Good energy resolution (**high-***p***_T** particles)
- Coarse angular resolution
- Susceptible to pile-up noise
- Retains neutral component
- Central+Forward coverage

Tracker

- Good energy resolution (low-p_T)
- Fine angular resolution
- Stable w.r.t. pile-up (vertex association)
- Lacks neutral energy flow
- Only central coverage until Run 4

CMS & ATLAS : Particle Flow

Calorimeter

- Good energy resolution (**high-***p***_T** particles)
- Coarse angular resolution
- Susceptible to pile-up noise
- Retains neutral component
- Central+Forward coverage

Tracker

- Good energy resolution (low-p_T)
- Fine angular resolution
- Stable w.r.t. pile-up (vertex association)
- Lacks neutral energy flow
- Only central coverage until Run 4

different magnetic field, tracker, calorimeter...

Heavy lons + DIS

- Designed for heavy-ion physics studies.
 - TPC provides excellent dE/dx measurements \rightarrow enhanced capability of particle ID studies
 - p/Pi/K separation @ 3σ , < 2 GeV
 - Enables D-hadron ID from TVs
 - TOF MRPC system extends PID to higher p_T's

Ratios of Pb+Pb / pp (R_{AA})

Example from CMS, Phys. Rev. C 96 (2017) 015202

Many HI results study the relative differences of systems **"in-medium"** (w/ QGP) and **"in-vacuum"** (pp) \rightarrow Ratios!

Least central: least modification

Deep Inelastic Scattering (DIS)

- Long history of fragmentation measurements continues: 3 new H1 results shown last year!

Special "zombie" prize for HI: Bringing jet substructure back in time, with three talks this year!

M. Światłowski @ BOOST '23

• HERA delivered sqrt(s)=320 GeV electron-proton collisions to H1 and ZEUS detectors (1992-2007).

Electron-lon Collider

EIC Snowmass White Paper 2203.13199

- EIC project is scheduled for construction at Brookhaven this decade.
 - e-p and e-nucleus deep inelastic scattering
 - polarized beams (spin physics studies)

EPIC Detector Concept

- Tracker: MAPS, micro pattern gaseous detectors (MPGDs)
- ECal: Homogeneous PbWO₄
- Far-forward & far-backward roman pots, ZDC along beam line
- PID (\rightarrow p/Pi/K separation @ 3 σ)
 - AC-LGAD ToF
 - Barrel: DIRC, <6 GeV
 - Backward: Aerogel RICH, <10 GeV
 - Forward: Gaseous RICH, <50 GeV

Quark? Gluon?

Higgs boson?

W/Z boson?

Top quark?

Tagging / Classification

Jets are proxies for high-energy quarks & gluons produced in collisions.

R=0.4

jet

R=0.4

b-tagged jet

R=0.4 jet

R=0.4 jet

Jets are proxies for high-energy quarks & gluons produced in collisions.

U

R=0.4 b-tagged jet

R=0.4

jet

R=0.4

... use "large-R" jets to collect the hadronic decays of heavy particles like top quarks!

R=0.4

b-tagged jet

R=1.0 'large-R' ~3xR=0.4 Boosted top

р_т ~ 600 GeV m ~ 180 GeV

Jets are proxies for high-energy quarks & gluons produced in collisions.

jet

15=0.4 jet

R=0.4

b-tagged jet

... use "large-R" jets to collect the hadronic decays of heavy particles like top quarks!

R=0.4

b-tagged jet

R=1.0

large

U

Date of paper

1996

Then <u>M. Vos o.b.o. ATLAS+CMS</u>, 2014

Rule-based HepTopTagger, Shower Deconstruction

Then <u>M. Vos o.b.o. ATLAS+CMS</u>, 2014

Rule-based HepTopTagger, Shower Deconstruction

Now

Boosted object tagging (nostalgic retrospective)

development in this area for 16 BOOSTs (and counting!)

• Many different approaches are constantly being utilized in physics analysis: continuous

How to read a ROC curve

ATLAS, JETM-2023-003

• Different people draw these with different ordinate quantities (efficiency vs. rejection)

CMS, <u>JINST 15 (2020) P06005</u>

Be mindful that AUC is not the only important metric!

• Trade-offs between power & precision: *Is performance being realized in data?*

ATLAS Top Tagging Study

Sensitivity to sources of uncertainty *increases with tagger complexity.*

(DeepAK8, DeepAK8-MD)

Mass decorrelation

- Certain background estimation strategies require taggers that do not sculpt the distribution of interest.
 - e.g. invariant mass spectrum \rightarrow fit sideband regions to estimate contribution in signal region

- Can de-correlate tagger performance from observable of interest.
 - Analytical approaches (Dolen et al. JHEP 05 (2016) <u>156</u>)
 - ML-based approaches (*e.g.* ANNs, <u>ATL-PHYS-PUB-2021-029</u>)

Unfolding corrects for detector-related resolution & acceptance effects.

Theorist

(Availability for MC tuning, PDF fits, CONTUR, etc.)

Matt LeBlanc (Brown) — Experimental BOOST Camp — BOOST 2024 @ Università di Genova — Slide 41

- **g** : observed detector-level distribution ('smeared')
- λ : desired particle-level distribution
- K: kernel / response function (map between spaces)

- **g** : observed detector-level distribution ('smeared')
- λ : desired particle-level distribution
- K : kernel / response function (map between spaces)

Unfolding methods & metrics (not exhaustive)

- Unfolding is an "ill-posed" inverse problem; many different approaches to solving it:
 - Binned (matrix-based):
 - Singular Value Decomposition (<u>SVD</u>)
 - Iterative Bayesian Unfolding (<u>D'Agostini</u>)
 - ML-based (see: <u>2211.01421</u> Sec. 5):
 - Classifier-reweighing: e.g. <u>Omnifold</u>
 - Generative: e.g. <u>cINNs</u>, <u>flow matching</u>, diffusion [<u>1,2,3,4</u>]
 - Regularization ou non?
- Choice of method surprisingly contentious: not a good use of time to argue about them now.
 - 2024 France-Berkeley Unfolding Workshop: https://indico.cern.ch/event/1357972/

- Often asking **similar questions** to assess the performance of these algorithms:
 - How diagonal is the kernel? (What is the experimental resolution? → determines bin granularity)
 - Does changing the prior change the result? Is the method converging? $(\rightarrow \text{Non-closure uncertainty})$
 - Is there sensitivity to the MC model used to construct the kernel? Hidden variables? (→ MC modeling uncertainty, *etc.*)
- Questions tend to matter even more as the kernel becomes further off-diagonal.
 - If there is a large bias, estimates of uncertainties can be untrustworthy.

Uther	aspe	CTS: 6	ettici	encv	

Nice examples — ATLAS Diphotons @ 13 TeV, JHEP 11 (2021) 169

• Fiducial ('fake-factor') corrections :

Also need to account for acceptance-

pass detector-level selection,

not truth-level selection

related effects (under/overflow):

- Correction factor 2.4 2.2 1.8 1.6 1.4
 - 1.2
- 0.8
- (In)Efficiency correction : pass truth-level selection, Efficiency not detector-level selection 0.9
- Often estimated directly from MC.
 - 0.7 Can add 'sideband' under/overflow 0.6 regions to kernel to decrease 0.5 extrapolations, reliance on MC.

/ & purity (fakes) corrections

Soft-drop observables: calo vs. track response matrices

ATLAS, Phys. Rev. D 101, 052007 (2020), Phys. Rev. Lett. 121, 092001 (2018)

ATLAS Simulation √s= 13 TeV, 32.9 fb⁻¹ Calorimeter-based, anti- $k_{+} R = 0.8$ Soft Drop, $z_{cut} = 0.1$, $\beta = 0$ Pythia 8.186

ATLAS Simulation √s= 13 TeV, 32.9 fb⁻¹ Track-based, anti- $k_{+} R = 0.8$ Soft Drop, $z_{cut} = 0.1$, $\beta = 0$ Pythia 8.186

Soft-Drop Jet Mass

ATLAS, <u>Phys. Rev. D 101, 052007 (2020)</u>, & earlier, Phys. Rev. Lett. 121, 092001 (2018)

"Relative Mass" $\rho = log(m_{SD}^2/p_T^2)$

Concluding remarks

Recap:

- Detectors: increased segmentation allows for better signal calibration and less readout noise.
 Please remember this when you are thinking about future collider detectors!
- Particle Flow: optimal combination of calo & tracker signals important for JSS performance.
- **Pile-up:** best to mitigate a little in each step (cluster/track reco, constituent-, jet-level, *etc.*).
- Heavy ions: centrality quantifies the fraction of participating nucleons in a collision.
- Jet Tagging: many approaches being used simultaneously for different purposes: important to also understand older approaches, context in which they are used.
- **Unfolding:** different approaches are used, but we typically ask similar questions to assess performance.

DD BROWN

Particle Physicists learn about our universe by studying the properties of particles.

What was the nature of our early universe?

Particle Physicists learn about our universe by studying the properties of particles.

What was the nature of our early universe?

... and what is its ultimate fate?

Soft-drop observables: calo vs. track before unfolding

ATLAS, Phys. Rev. D 101, 052007 (2020), Phys. Rev. Lett. 121, 092001 (2018)

Aside: CMS JSS Angularities Measurement

CMS, JHEP 01 (2022) 188

JSS Angularities

Products of relative constituent energies and angles, varying weight of each component

$$\lambda_{\beta}^{\kappa} = \sum_{i \in jet} z_{i}^{\kappa} \left(\frac{\Delta R_{i}}{R}\right)^{\beta}$$

- Both ATLAS and CMS have made comparisons of charged+neutral & charged-only pictures.
 - Similar observations can be made using data from both collaborations
 - Perhaps surprising, given CMS's \bullet "particle-flow" reconstruction.

Pencil-like

'Isotropic'

Similar levels of (dis)agreement!

Charged picture has significantly more reach into collinear region!

beam

Run Number: 336852, Event Number: 883966264

Date: 2017-09-29 09:19:23 CEST

"What is a jet?" Starting place for jet physics: Salam <u>0906.1833</u>

- Jets are formed when high-energy quarks and gluons are produced in LHC collisions.
 - Interpreted as a proxy for parton momentum.
- Jets are complex:
 - Multi-scale
 - Large area
 - Composite objects
 - Diverse signals:
 - Calorimetry
 - Charged-particle tracks
- Jets do not exist without their **definition**:
 - Recursive recombination algorithms (anti-kt, C/A, ...)
 - Radius parameter (*R*)
 - Other choices ...
 - Grooming? Pile-up mitigation? *Common complaint: too many choices*

"Soft things into hard things"

Anti-*k*t

LHC daily driver

Cambridge / Aachen

"Angle-ordered"

Irregular shape: difficult to calibrate

187 652 (178 308).

Calorimeter	Module Sampling (S_{calo})	N _{cells}	η -coverage	$\Delta\eta imes \Delta\phi$
Electromagnetic	EMB	109 568	$ \eta < 1.52$	
calorimeters	PreSamplerB	7 808	$ \eta < 1.52$	$0.025 \times \pi/32$
	EMB1		$ \eta < 1.4$	$0.025/8 \times \pi/32$
			$1.4 < \eta < 1.475$	$0.025 \times \pi/128$
	EMB2		$ \eta < 1.4$	$0.025 \times \pi/128$
			$1.4 < \eta < 1.475$	$0.075 \times \pi/128$
	EMB3		$ \eta < 1.35$	$0.050 \times \pi/128$
	EMEC	63 744	$1.375 < \eta < 3.2$	
	PreSamplerE	1 536	$1.5 < \eta < 1.8$	$0.025 \times \pi/32$
	EME1		$1.375 < \eta < 1.425$	$0.050 \times \pi/32$
			$1.425 < \eta < 1.5$	$0.025 \times \pi/32$
			$1.5 < \eta < 1.8$	$0.025/8 \times \pi/32$
			$1.8 < \eta < 2.0$	$0.025/6 \times \pi/32$
			$2.0 < \eta < 2.4$	$0.025/4 \times \pi/32$
			$2.4 < \eta < 2.5$	$0.025 \times \pi/32$
			$2.5 < \eta < 3.2$	$0.1 \times \pi/32$
	EME2		$1.375 < \eta < 1.425$	$0.050 \times \pi/128$
			$1.425 < \eta < 2.5$	$0.025 \times \pi/128$
			$2.5 < \eta < 3.2$	$0.1 \times \pi/128$
	EME 3		$1.5 < \eta < 2.5$	$0.050 \times \pi/128$
Hadronic calorimeters	Tile (barrel)	2880	$ \eta < 1$	
	TileBar0/1			$0.1 \times \pi/32$
	TileBar2			$0.2 \times \pi/32$
	Tile (extended barrel)	2 304	$0.8 < \eta < 1.7$	
	TileExt0/1			$0.1 \times \pi/32$
	TileExt2			$0.2 \times \pi/32$
	HEC	5632	$1.5 < \eta < 3.2$	
	HEC0/1/2/3		$1.5 < \eta < 2.5$	$0.1 \times \pi/32$
			$2.5 < \eta < 3.2$	$0.2 \times \pi/16$
Forward calorimeters	FCAL	3 524	$3.1 < \eta < 4.9$	$\Delta x \times \Delta y$
	FCAL0		$3.1 < \eta < 3.15$	$1.5 \text{ cm} \times 1.3 \text{ cm}$
			$3.15 < \eta < 4.3$	$3.0 \mathrm{cm} \times 2.6 \mathrm{cm}$
			$4.3 < \eta < 4.83$	$1.5 \text{ cm} \times 1.3 \text{ cm}$
	FCAL1		$3.2 < \eta < 3.24$	$1.7 \mathrm{cm} \times 2.1 \mathrm{cm}$
			$3.24 < \eta < 4.5$	$3.3 \mathrm{cm} \times 4.2 \mathrm{cm}$
			$4.5 < \eta < 4.81$	$1.7 \mathrm{cm} \times 2.1 \mathrm{cm}$
	FCAL2		$3.29 < \eta < 3.32$	$2.7 \mathrm{cm} \times 2.4 \mathrm{cm}$
			$3.32 < \eta < 4.6$	$5.4 \mathrm{cm} \times 4.7 \mathrm{cm}$
			$4.6 < \eta < 4.75$	$2.7 \mathrm{cm} \times 2.4 \mathrm{cm}$

Table 1: The read-out granularity of the ATLAS calorimeter system [1], given in terms of $\Delta \eta \times \Delta \phi$ with the exception of the forward calorimeters, where it is given in linear measures $\Delta x \times \Delta y$, due to the non-pointing read-out geometry of the FCAL. For comparison, the FCAL granularity is approximately $\Delta \eta \times \Delta \phi = 0.15 \times 0.15 (0.3 \times 0.3)$ at $\eta = 3.5(4.5)$. The total number of read-out cells, including both ends of the calorimeter system, with (without) pre-samplers is

Higgs boson?

W/Z boson?

Top quark?

Tagging / Classification

Higgs boson?

W/Z boson?

Top quark?

Something else?

Higgs boson?

W/Z boson?

Top quark?

Something else?

Higgs boson?

W/Z boson?

Top quark?

Something else?

Higgs boson?

W/Z boson?

Top quark?

Something else?

Higgs boson?

W/Z boson?

Top quark?

Something else?

(Dark Shower)

Higgs boson?

W/Z boson?

Top quark?

Something else?

Event displays were from : https://atlaspo.cern.ch/public/event_display/ https://cds.cern.ch/record/2714889

(Dark Shower) (Pause for laughter)

<u>The Soft-Drop / modified Mass-Drop Algorithm</u>

1. Start with anti-*k*^{*t*} jet.

Dasgupta, Fregoso, Marzani, Salam, JHEP09 (2013) 029, Larkowski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146

<u>The Soft-Drop / modified Mass-Drop Algorithm</u>

1. Start with anti-*k*^{*t*} jet.

Dasgupta, Fregoso, Marzani, Salam, JHEP09 (2013) 029, Larkowski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146

Matt LeBlanc (Manchester) — Manchester Bohr Seminar 2023.11.17 — Slide 72

2. Recluster with C/A algorithm. (Angle-ordered!)
<u>The Soft-Drop / modified Mass-Drop Algorithm</u>

1. Start with anti-*k*^{*t*} jet.

Dasgupta, Fregoso, Marzani, Salam, JHEP09 (2013) 029, Larkowski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146

2. Recluster with C/A algorithm. (Angle-ordered!)

3. Check soft-drop condition at each node, starting with the widest-angle emission.

Stop when one passes!

Lund jet plane Dreyer, Salam & Soyez JHEP 12 (2018) 064

- Lund Plane : tool used by Parton Shower community for >30 years (Andersson et al. **Z.Phys.C 43 (1989) 625**)
- Newly applied to JSS by **Dreyer** et al.
 - **Key concept:** probe entire angle-ordered emission history of originating parton.
 - Recluster jet with C/A algorithm
 - Parameterise emissions in terms of their **relative** energies (z) and angles (ΔR).
- Powerful, physics-forward representation of JSS:
 - ML/AI <u>1903.09644</u>, <u>2012.08526</u>, **q/g tagging** <u>2112.09140</u>, **PSMC development** <u>1805.09327</u>, <u>2205.02861</u>, analytics 2007.06578, heavy-flavour 2106.05713 **dead-cone** *ALICE*, *Nature* 605, 440–446 (2022)
 - We had a whole LJP workshop at CERN in July!

Matt LeBlanc (Manchester) — Manchester Bohr Seminar 2023.11.17 — Slide 74

