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Jet substructure Selected

Discalaimer

The referencing is minimal. Apologies for any relevant omission.

| have taken inspiration (and stolen material) from:
® |ectures by Matteo Cacciari and Gavin Salam
® previous BOOST Camps

® the two books in the Conclusion slides

I will not follow an historical approach, rather | will focus on concepts.

| will mostly present textbook knowledge, rather than topics still in developments.
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QCD Crash Course

All the QCD we will need in this talk Larkoski (1709.06195)

Assumption: at high energies,
1. the coupling of QCD, ay, is small, so we can use perturbation theory.
2. QCD has no intrinsic scale, it is a scale-invariant quantum field theory.

Probability for a quark to emit a gluon:
g

Two degrees of freedom, F, and m?2, with
>m2 2 .
m= =2pq - pg = 2E4E4(1 — cos )
Scale invariance means that:

P(AE,, N>’m?)d(AE,)d(A\*m?) = P(E,,m*)dE,dm?
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QCD Crash Course

All the QCD we will need in this talk Larkoski (1709.06195)

The simplest form turns out to be the correct one:

a,C; dE, dm?

2 2 __
P(Eg,m )dEgdm = - Eg W

C; is a colour factor: C; = Cp =4/3 for ¢ — qg and C; = C4 = 3 for g — gg.

< In term of dimensionless quantities, § and z = E,;/(E, + E),
and by taking the small angle limit, § < 1
\0 Cr dz d6?
2 2 Qsbr A2 A0
(1= 2) P(z,0%)dzd6* = . ®

QCD dynamics favours emission of soft (z — 0) and/or collinear (6 — 0) particles.
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Jet algorithms

What is a jet?

A jet is the macroscopic manifestation of QCD dynamics at high energies
i.e. most of the particles are soft or tend to be emitted at small angles

Parton level

Particle Jet Energy depositions

in calorimeters

Naive definition: collimated bunch of hadrons flying roughly in the same direction
Proper definition: a collection of hadrons defined by means of a jet algorithm
At the LHC we usually adopt sequential recombination clustering algorithms

that can applied to objects at parton, particle or detector level.
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Jet algorithms

Example: the gen-k; family of clustering algorithms

Given distances d;; and beam distances d;p defined as:

AR},
R

. 2 2 2
d;j = min (ptip,ptf) dip = pm?”

with transverse momentum p; and angular distance AR?; = (y; — ;) + (¢i — ¢;)* with y
rapidity y and azimuthal angle ¢, apply the following algorithm:

1. identify all initial objects as pseudo-jets

2. find the minimum distance:

® d;;: recombine the pseudo-jet (4, 7) into a new pseudo-jet k by summing the 4-momenta and
update the distances
® d;p: declare the pseudo-jet i as a final jet and remove all distances involving i.

3. iterate until there are no pseudo-jets left.

The parameter R is called jet radius (usually taken between 0.4 and 1)
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Jet algorithms

Example: the gen-k; family of clustering algorithms

The value of the parameter p defines the algorithm:

ARZ.
. 2 2 2
d;; = min (ptﬁptf) R;J , dip = me
® p=1: k algorithm
® p =0: Cambridge/Aachen (C/A) algorithm
® p = —1: anti-k; algorithm
G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory)
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Jet algorithms

Example: the gen-k; family of clustering algorithms

The value of the parameter p defines the algorithm:
® p=1: k algorithm — mass/virtuality ordering

ARZ.
d;; = min (p?i,p?j) R;] , dip =p};

Distance measure reflects the splitting probability Py_,;;:

Qs 1
min (pfl , p%j) AR?j dij

Pp_ij ~

(at the LHC we use variables invariant under longitudinal boosts, such as p; and Ag;

energies and angles are not invariant)
® p =0: Cambridge/Aachen (C/A) algorithm
® p = —1: anti-k; algorithm
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Jet algorithms

Example: the gen-k; family of clustering algorithms
The value of the parameter p defines the algorithm:
® p=1: k; algorithm — mass/virtuality ordering
® p =0: Cambridge/Aachen (C/A) algorithm — pure angular ordering
2

dij 2

dile

® p = —1: anti-k; algorithm
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Jet algorithms

Example: the gen-k; family of clustering algorithms
The value of the parameter p defines the algorithm:
® p=1: k; algorithm — mass/virtuality ordering
® p =0: Cambridge/Aachen (C/A) algorithm — pure angular ordering

® p = —1: anti-k; algorithm — unphysical?
1 1\ AR} 1
dij = min | —, - Y dip=—
Y (pfi pt2j> R? ' pi;

It tends to favour clustering involving hard particles rather than first recombining soft
particles or particles close in angle.
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Jet algorithms

Anti—kt in action Animations by M. Cacciari

anti-kt, d = 1.00e-100 |

0 ¢ -4 2

y

Clustering growing around hard cores
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Animations by M. Cacciari
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Jet algorithms

Anti—kt in action Animations by M. Cacciari

anti-kt, d = 1.00e+100 |

0 ¢ -4 2

y

Circular jets in a theory-friendly way
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The jet mass

Warmup calculation: jet mass

Defined as the squared sum of the 4-momenta of all particles in a 2
jet. At leading order (a single quark or gluon), it is zero. Jets 9
acquire mass through showering!

In the collinear limit, it can be written as:
2 p2p2 2
m* = R“F5 E 2; 05
i€jet

with z; the momentum fraction of the emission (rescaled by the q
jet energy E;) and 6; the angular distance from the jet axis
(rescaled by the jet radius R). We define

pzzzzﬂ?:ZPi

i€jet i€jet
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The jet mass

Warmup calculation: jet mass

Cumulative distribution 3(p) ( = probability of measuring a mass < p)

2(p) = Z% H/dzidﬁfP(zi,Qf) 0 <1)0 (> pi<p|+600; >1)—1
n=0 i=1

=1

® We sum over all possible number of emissions, with each emission coming with a
probability P(z;,6?)

® Real emissions inside jet (6; < 1) are allowed only if they leads to a value of the jet mass
less than p (Z?Zl pi < p)

® Real emissions outside jet (#; > 1) as well as virtual emissions (*“-1") are always allowed,
as they don't affect the value of jet mass
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The jet mass

Warmup calculation: jet mass
Assuming gluon emissions off a quark:
9 s aCpdz d6? _ aCp 1 1

Crucial observation: emissions are uniform in the (log1/62,1log1/z) plane
— they are exponentially apart in (62, z) — a single emission dominates the jet mass

\"
log% soft . %LCO\\“\Q‘@
. 0 . %O“
e

* n n

_— collinear /o) Zpi <p|~6 (maXPi < P) = 1_[@(pz < p)
i=1 ¢ i=1

1 . . . . .
log 25 i.e. factorisation of contributions

“Lund” plane
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The jet mass

Warmup calculation: jet mass

By exploiting our observation, we obtain exponentiation:

D) = 3 o (- [ dsat?Plen ) 006 <080 > ) = exp V(o)

n=0

log(1/2) Graphical interpretation: we are vetoing all real contributions that
. would lead to a value of the mass larger than p — only virtual
‘ contributions survive in the red forbidden region.
The no-emissions probability V' (p) is proportional to the area of
: the forbidden region:

dzl d92

* o asCF

O(z:67 > p) =

log(1/62)

log(1/p)
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Jet mass at the LHC

Comparison to data is complicated by
non-perturbative physics:

® hadronisation
® underlying event (UE)
® pile-up
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The jet mass
Jet mass at the LHC
plain mass: hadronisation (quark jets)
m [GeV], forp;=3TeV,R=1
10 100 1000
04 F parton level i
hadron level (no UE) = = =
g o3f hadron level (with UE) = =
= -
o]
T o2} =2 .
. . . 2 J/
Comparison to data is complicated by o4k 1
. . : I
non-perturbative physics: g
e hadronisati 0 L0 A A
adronisation 108 104 0.01 0.1 1
® underlying event (UE) Pythia 6.4 DW p =m?/(p? R?)
® pile-up
16/46
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The jet mass

Jet mass at the LHC

@ [T T T T
= L ATLAS Ldt=4.71", s =7 TeV |

> I Data 2011 ' 1

2 0.1f—anti-k, with R=1.0 LCW, No jet grooming applied —

© [ 600=p <800 GeV, Inl <0.8 1

= r soeees 1sNoysd ]

< 0.08- " ST ATLAS, JHEP 1309

[ Noy212 (2013) 076 ]

0.06- .

0.04}- .

Comparison to data is complicated by r 1
non-perturbative physics: 0.02[- i
® hadronisation N R e ,

S5

50 100 150 200 250 300

e underlying event (UE) >
Leading jet mass, m” [GeV]

® pile-up
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The jet mass

Jet mass at the LHC

Also effects of perturbative origin, such as non-global
logarithms (NGLs), jet radius corrections, multiple
emissions render calculations more complicated

quark in Z+jet - analytic
m [GeV]
10 100 1000
03
oone-gluon exponentiation
with multiple emissions ==
with nop-global logs = =
with O(RY corrections ——

plo doldp

Comparison to data is complicated by
non-perturbative physics:

® hadronisation

® underlying event (UE)

® pile-up
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Jet substructure
Boosted objects
Reclustering
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Analytic understanding: Soft Drop
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Boosted objects

What are boosted objects?

Let's consider the 2-prong decay of a heaavy particle X.

2
5 m
Remember that m? ~ z(1 — 2)p76% — 07 o —
by
Standard analysis: p; < m Boosted analysis: p; > m
Decay products are reconstructed as two Decay products are collimated and they end up
separate jets. in a single jet.
- L N
Phd \ - \
X at rest % . 1 - )
(R boosted X ,
S jet1 |
' =7 S I
\ e e S /
‘-7 jet2 /7\2/ S~

The boosted scenario is common at the LHC
e.g. electroweak particle with mass m ~ 100 GeV produced with p; ~ 1 TeV

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory) 18/46
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Boosted objects

Jet mass as discriminant?

How to discriminate from
0.035 0016
0.03 W events 0014 qq — qq events
'\'> 0.025 —> 0.012
2 ©
2 oo P jets > 700 GeV g oo Ptjets > 700 GeV
£ anti-k, R=0.7 £ 0008 anti-k, R=0.7
S o015 5
e . 2 0006
s om Slgnal € o004
0.005 0.002 BaC kgr'
0 0
0 50 100 150 200 0 50 100 150 200
Mgy [GeV] Mgy [GeV]

The normalised jet mass distribution peaks around the W-boson mass, whereas the jet mass of
the QCD background is peaked towards smaller values of the mass.
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Boosted objects

Jet mass as discriminant?

qq — qq events 0.014

Py jets > 700 GeV
anti-k, R=0.7

1N dN/dmyg, [GeV'')
o
o
o
@
1N dN/dmy, [Gev']
=]
o
o
@

0 50 100 150 200
Mgy [GeV]

However, when we add signal on top of background with appropriate cross section,

Selected topics
000000000

qq — qq + Wj mixture

Py jets > 700 GeV
anti-k, R=0.7

50

100 150
Migy [GeV]

the distributions are practically identical!

— we need to go beyond the monolithic picture of a jet by studying its substructure

200

i.e. identify hard prongs and quantify amount of radiation around them.
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The world of jet substructure
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Conclusions
0000

First application was tagging of boosted objects, but nowadays is a very broad topic.

JET

tagging SUBSTRUCTURE
boosted
objects
UE/Pileup (/l/ \‘\;
mltlgatlon
(grooming)
QCD Heavy-i
o y-ion
p':hcéﬂgn collisions
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Reclustering

Re-cluster the jet

® The starting point of many jet substructure technique: given a jet, recluster it i.e. get the
clustering sequence by using an algorithm different from the one adopted from jet
reconstruction.
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Re-cluster the jet

® The starting point of many jet substructure technique: given a jet, recluster it i.e. get the

clustering sequence by using an algorithm different from the one adopted from jet
reconstruction.

® Usually, jets are first found with anti-k; with a large radius R ~ 1, in order to collect all
decay products. But anti-k; is not suited for jet substructure!
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Reclustering

Re-cluster the jet

® The starting point of many jet substructure technique: given a jet, recluster it i.e. get the

clustering sequence by using an algorithm different from the one adopted from jet
reconstruction.

® Usually, jets are first found with anti-k; with a large radius R ~ 1, in order to collect all
decay products. But anti-k; is not suited for jet substructure!

® |et's investigate the clustering sequences of the gen-k; family when applied to a
2-prong-like event e.g. W decay
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Reclustering

Which algorithm is most suited to jet substructure?  Animations by G. Salam

Let's investigate the clustering sequences of the gen-k; family
when applied to a 2-prong-like event.

anti-k; algorithm ke algorithm Cambridge/Aachen algorithm
pJ/GeV p/GeV p/GeV
50 50 50
40 40 40
30 30 30
20 20 20
10 1o 10
ol 1 | I| | L 0+ | L | | L ol 1 | L | | L
0 1 2 3 4y o 1 2 3 4y 0 1 2 3 4y
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Which algorithm is most suited to jet substructure?  Animations by G. Salam

Let's investigate the clustering sequences of the gen-k; family
when applied to a 2-prong-like event.

anti-k; algorithm ke algorithm Cambridge/Aachen algorithm
pJ/GeV p/GeV p/GeV
50 50 50
40 40 40
30 30 30
20 20 20
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Reclustering

Which algorithm is most suited to jet substructure?  Animations by G. Salam

Let's investigate the clustering sequences of the gen-k; family
when applied to a 2-prong-like event.

anti-k; algorithm ke algorithm Cambridge/Aachen algorithm
pI/GeV dmin is dij = 3.57137e-05 p‘/GCV pI/GcV
50 50 50
40 40 40
30 Bl 30 30
20 20 20
10 1o 10
Y P | 1 | | L 0+l | | | | 1 o1 | 1 | | L
0 1 2 3 4y o 1 2 3 4y 0 1 2 3 4y
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Which algorithm is most suited to jet substructure?  Animations by G. Salam

Let's investigate the clustering sequences of the gen-k; family
when applied to a 2-prong-like event.

anti-k; algorithm ke algorithm Cambridge/Aachen algorithm
pJ/GeV p/GeV p/GeV
50 50 50
40 40 40
30 30 30
20 20 20
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Reclustering

Which algorithm is most suited to jet substructure?  Animations by G. Salam

Let's investigate the clustering sequences of the gen-k; family
when applied to a 2-prong-like event.

anti-k; algorithm ke algorithm Cambridge/Aachen algorithm
pI/GeV dmin is dij = 0.000496598 p‘/GCV pI/GcV
50 50 50
40 40 40
30 30 30
20 20 20
10 1o 10
ol 1 || | L 0+ | L | | L ol 1 | L | | L
0 1 2 3 4y o 1 2 3 4y 0 1 2 3 4y
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Which algorithm is most suited to jet substructure?  Animations by G. Salam

Let's investigate the clustering sequences of the gen-k; family
when applied to a 2-prong-like event.

anti-k; algorithm ke algorithm Cambridge/Aachen algorithm
pJ/GeV p/GeV p/GeV
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40 40 40
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0 .
Information about prongs Prongs are recombined in ot Yy
lost early in the history. the last step of clustering.
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Which algorithm is most suited to jet substructure?

Let's investigate the clustering sequences of the gen-k; family
when applied to a 2-prong-like event.
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Information about prongs
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G. Stagnitto (UniMiB & INFN)
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the last step of clustering.
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Reclustering

Which algorithm is most suited to jet substructure?  Animations by G. Salam

Anti-k; bad (unphysical), k; good (physical),
C/A very good together with some “cleaning” of soft junk

anti-k; algorithm ke algorithm Cambridge/Aachen algorithm
p/GeV p/GeV pJGeV
50 0 0
40 40 40
30 F% [ 1 30 30 J
20 20 20
10 10 10
1 0 1
°% 1 2 3 4y 0 ! 2 3 4y °s 1 2 3 iy
Information about prongs Prongs are recombined in Angular ordering with some
g g
lost early in the history. the last step of clustering. soft contamination.
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Togger and groomers
Tagging & grooming

Once the jet has been reclustered, we can tag and/or groom it.

Tagging: find a particular structure inside the jet e.g. 2-prong R R
decay of Higgs boson or 3-prong decay of top quark.

Key observation: energy sharing in signal is mostly @

simmetrical (Py(z) ~ 1), whereas in background is mostly h ~ q

asymmetrical (P, (z) ~ 1/z).

Grooming: remove background contamination in jet, while keeping

the bulk of perturbative radiation.
Key observation: NGLs, UE, pile-up mostly appear as soft

anderlying cvent wide-angle radiation inside the jet.

pile-up

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory) 24/46
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Tagger and groomers

Example of grooming: trimming and pruning

o Pruning (bottom-up approach)
Trimming (top-down approach)

Pruning
Redo clustenng
emove soft
Trimming oo
po— Remove soft
small R —
—_— —

1. Define (dynamical) pruning radius
Rprune =2 fprune mjet/pt,jet
2. For every step i + j — k of C/A check:
® Large angle? : AR;; < Rprune
® Soft? : min(pts, Pt,j) > Zprune Pt.k

1. Recluster with C/A with a
smaller radius Riyim

2. Keep all subjects with

Dt > forim Dt jot 3. If neither criteria are met, eliminate softer subjet
and keep the harder one

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory)
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Tagger and groomers

Example of tagging: N-subjettiness Thaler, Van Tilburg (1011.2268)

N-subjettiness 7y quantifies the amount of radiation around N prongs. After having
introduced a set of N axes {a1,...,an} (e.g. the ones given by gen-k; algorithm or the ones
that minimize 7x), 7n is defined as:

) =Y pumin(AR}, ,...,AR ), witheg §=1,2

iaN
i€jet
The N-subjettiness ratio: Bodind GGB el it Boosted W Jet, R - 0.6
5. 2
(/3) 5.6 2|
LB _ N A Ce
N,N—1 — (ﬁ) 5.4 ’,' s BN 180 )
TN*I - 52 ‘ _:]‘2 ."\ 915{‘ ',D \
. . .. . . 5 e Ko \ ™
is a good discriminating variable for N-prong 1y - "
signal jets against QCD background e.g. a cut i N ) "
on To1 < Teut Useful to discriminate W/Z/H * L o
-12 -1 -08 -06 -04 -02 -0.2 o 0.2 04 0.6 0.8 1
n

vs. QCD and 739 < Teut useful for top vs. QCD.

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory) 26/46



QCD and jets Jet substructure
000000000000 000000000080 00000

Tagger and groomers

Soft Drop: tagger and groomer

First, recluster jet constituents with C/A.
1. Undo the last stage of C/A,
(i+j)—i+j
2. Check Soft Drop condition:

min(pt,iapt,j) > Zous <ARij)6
Dt + Pt o R

In soft limit, 2 > zcu6”.
If subjets pass it, then declare (i + j)
as the soft-drop jet.

3. Otherwise, iterate on the subjet with
the largest p;.

G. Stagnitto (UniMiB & INFN)
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Larkoski, Marzani, Soyez, Thaler (1402.2657)

log(1/z)

log(1/zcut) < ffffffffffffff

log(1/6?)

® 3 > 0: remove all soft radiation and some
soft-collinear

® 3=0 (mMDT): remove all soft-collinear (just
symmetry condition)

® 3 < 0: remove also hard-collinear radiation

BOOST Camp 2024 (theory) 27/46
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Tagger and groomers

Larkoski, Marzani, Soyez, Thaler (1402.2657
Soft Drop: tagger and groomer arkoski, Marzani, Soyez, Thaler ( )

. . . . log(1/z
First, recluster jet constituents with C/A. s
1. Undo the last stage of C/A, -
(i+j)—i+j ol
2. Check Soft Drop condition: Log(1/ 7o) 3:0 ”””””
. NG
mln(pt,iapt,j) ARij g 7
- > Zcut R
Pt,i + Dtj log(1/6%)
In soft limit, 2 > zcu6”.
If subjets pass it, then declare (i + j) ® 3> 0: remove all soft radiation and some
as the soft-drop jet. soft-collinear
3. Otherwise, iterate on the subjet with ® 3 =0 (mMDT): remove all soft-collinear (just
the largest p;. symmetry condition)

® 3 < 0: remove also hard-collinear radiation

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory) 27/46



QCD and jets Jet substructure
000000000000 000000000080 00000

Tagger and groomers
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min(pt,iapt,j) > Zous <ARij)6
Dt + Pt o R

In soft limit, 2 > zcu6”.
If subjets pass it, then declare (i + j)
as the soft-drop jet.

3. Otherwise, iterate on the subjet with
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Larkoski, Marzani, Soyez, Thaler (1402.2657)

log(1/z)
37,
log(1/zeut) e}:—/—’— - —ﬁ— S
o
\\\\to
log(1/6%)

® 3 > 0: remove all soft radiation and some
soft-collinear

® 5 =0 (mMDT): remove all soft-collinear (just
symmetry condition)

® 3 < 0: remove also hard-collinear radiation
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Tagger and groomers

Soft Drop: tagger and groomer
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Larkoski, Marzani, Soyez, Thaler (1402.2657)

log(1/z)
p7
log(1/zeut) e:—:—/— - —/{—:—0— ——————————
&
\\V\O
log(1/6%)

® 3 > 0: remove all soft radiation and some
soft-collinear

® 3=0 (mMDT): remove all soft-collinear (just
symmetry condition)

® 3 < 0: remove also hard-collinear radiation
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Analytic understanding: Soft Drop

Comparison of different taggers

Evaluate performances .
with ROC curves: Example of ROCs for combinations of taggers and

——— groomers for W tagging (slide from BOOST 2013):

.
-1
+ L ’ - gﬂ - P [
. T, m,,
i) 4 2 e met,
L L A My ‘E‘; » —maTy;
g L — ma m+C, meTo
o L , B ma+ m+m, — msm, mon%‘
c i it ur
£ . ~mam? f;nf%” ey e
., et 1 4 L
= e Ty +l g, + Toy +M, +m,
s Tom  Emn e o
2r ’ b T4l 1:‘%5— “m o T Mo
3 . T T BT~ SR
e . 2.+ Msa 21 Msa C; #C2 G o
5 F , B 9 C, +m, C, +my,, , +Mm,
S, im S‘ ‘mmdt ﬁ‘ prus . 'sd
S e Co ey c{wm s}my chhem,
< L ’ 4 =2 2 G 2 NN mmdt
° Cy + C, +m, Cy, +m, Tgjert
. ry r:':,,...,. Lot LogtM T :lli’-'!
L - B | ot Mo Lot Lajort Mg~ LogarHM
L7 etter 7 Mot Mgt Moo, Myt Mo~ My Mg
ol e : : ' 8 M M~ My~ M M
0 1 sig mymly’ —— mmls —allvars

signal efficiency: €g i . i
Can we understand these curves from first principles?

Dashed line is a random ragger . . . .
&8 Revolution driven by analytical studies.

e.g. flipping a coin.
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Analytic understanding: Soft Drop

Jet mass after grooming: Monte Carlo vs.

quark - Pythia(s.230)

m [GeV]
10 100 1000
0.3 T - .
= == trimming
~:=:- pruning
0.25 [ =— mMDT ==+ Y-pruning |
Zcut=ftrim=2prune=0.1 anti-ky(R=1)
0.2 | Rerim=0.2 pe>3 TeV
g forune=0.5 1
B
- 015 . i
o S
a3 !
o1 / ]
./ I/
0.05 ./~ / i
Ve
o Lt l
106 10° 104 103 0.01 01 1

p=m?/(p¢? R?)

Transition points and shapes

G. Stagnitto (UniMiB & INFN)
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000000000
analytics
quark - analytic LL calculation
m [GeV]
10 100 1000
0.3 T T T
---------- plain === trimming
—=—= SD(B=2) === pruning
0.25 ' ——— mMDT ———— Y-pruning
Zeut=Ftrim=2prune=0.1 R=1
0.2 | Ruim=0.2 pt=3TeV
o fprune=0-5
=}
© 015 _
&
a .
01 , b
0.05 [ P Zeut 1
. f;
0 ftrim:’grim ZP:,::Z
106 10> 104 103 0.01 01 1

p=m?/(p¢? R?)

can be traced back to analytical calculations.

BOOST Camp 2024 (theory)

Conclusions

29/46



QCD and jets Jet substructure Selected topics Conclusions
000000000000 0000000000000 e000 000000000 0000
Analytic understanding: Soft Drop

Example: jet mass after Soft Drop with 5 > 0

log(1/2)

o /‘/
oo%.-”
%S

Let's revise the jet mass calculation: s

Zsp(p) = exp [=O(p > zeut)V(p) — O(p < zeut)Vsp] log(1/)
For p > z.us, Soft Drop has no effect.

log(1/6%)

loz(1/p)

The no-emission probability is the same of the plain jet mass, V(p).

sC dz; d92 sC
V(P)Za F/ & 219?>P):a

T 2

1 1
F 2 og?
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Analytic understanding: Soft Drop

Example: jet mass after Soft Drop with 5 > 0
log(1/z)

0&‘0‘0?1 g
‘3

Let's revise the jet mass calculation:
Ysp(p) = exp [=O(p > zeur)V(p) — O(p < zeut) Vsp] tog(1/ze) ¢

For p < zcus, Soft Drop removes soft radiation (and
with 8 = 0 also soft-collinear radiation).

log(1/6%)

. log(1/p)
The shared red area is:

a,Cr dzZ d02

Vsp(p) = O(2:6? > p) O(z > zewtb?)

aSCF g 1 21 2 (1 9 1 Zeut 1 )]
= ——1lo —lo + lo lo
n [2+62 o arp 2 i T

With 8 = 0 double logarithms of log(1/p) are absent.

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory) 30/46
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Example: jet mass after Soft Drop with 5 > 0

The jet mass spectrum is

given by
pdo _ dX(p)
odp dlogp

reproducing behaviour of
Monte Carlo simulations.

mMDT basically flat
(good background).

G. Stagnitto (UniMiB & INFN)

p/o do/p

quark - analytic LL calculation

m [GeV]
10 100 1000

03 F T T T 3

——— plain R=1

——— SD(B=2) pt=3 TeV
0.25 |- sD(B=1) 1

- mMDT Ze=0.1
0.2 [ b
0.15 - b
01 [ b
0.05 1

Zeut
L L L

0
10€ 105 10* 103 0.01
p=m?/(p¢? R?)

BOOST Camp 2024 (theory)
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000000000 0000
quark - Pythia(s.230)
m [GeV]
10 100 1000
0.3 T _ T T 3
——— plain anti-k((R=1)
— SD(B=2) p>3 TeV
025 op(p=1) B
= mMDT Ze=0.1
02 - B
Q
2
3 015 | 1
°
Q
01 - B
0.05 |- 1
° f . L L
10 105 10* 103 0.01 01 1

p=m?/(p;? R?)
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Example: jet mass after Soft Drop with 5 > 0

quark - Pythia(s.230) - hadronisation
m [GeV]

5 10 20 50 100200 5001000
14 Zeut=firim=2prune=0.1 | _
c Ririm=0.2 g
g t2p forune=0.5 7 o
g £
s g

1<) anti-ky(R=1)
B osr pe>3 TeV ] g
L L plain - S o
g 06 SD(B=2) ——- 2
& o4t mMDT —— | =
g O . g
s trimming - 3
® 02t pruning —-—- 4 s

. Y-pruning =se=--

0 7 . . .
10° 104 10% 0.1 0.1

p=m2/(p? R?)

quark - Pythia(s.230) - UE
m [GeV]

10 20 50 100200 5001000

anti-ky(R=1)
p>3 TeV
plain - -
SD(B=2) =—=—

£ trimming
pruning ==~

Y-pruning =:-=--
L L L L

mMDT =—— |

104 103 001 0.1
p=m?/(p? R?)

FS
10

Relative Probability
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Jet Mass in Herwig++
13 TeV, pp - Z+j, pry > 500 GeV,R = 0.8
Soft Drop, zew =0.1,=0
Jet Mas
------ Jet Mass + PU

— Soft Drop Jet Mass

------ Soft Drop Jet Mass + PU

1.2¢

o

54
%

o
>

e
=

o
S

=4

o
o
o
S

0.001

|3

<
kS

Reduced sensitivity to non-perturbative physics compared to other tools.

G. Stagnitto (UniMiB & INFN)

BOOST Camp 2024 (theory)
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Analytic understanding: Soft Drop

Soft Drop: a BOOST success story

discussions at BOOST 2013 04 Groomed Jet Mass 1 5 Fome ]
r C 3Tev,329 1" : Prnas. ]
N - - ali [ V=13 Tev, 2. ia ]
Soft Drop zeu = 0_‘ 1, =0, Normalized b osf— antik R=0.8, 600 GeV <p, <650 Gev Shepazt —
13TeV. pp = Z+j, pry > 500 GeV, R = 0.8 & E sodopp=0.2,,=01 e A oo ]
2 03[ 7 1 e LomNLL ]
g \ T os— v 3
g TN Y = ¢ ]
£ N Q g C ]
£ os 3 ] o @k&\\!\\\\\'\v & 3
g > b =
3 ... NLL+NLO SO ; ; M
0.1 —— NNLL+NNLO s SE =
= = ] L] S
==== Herwig++ 8 ns:L 1 . v " " " . —
! s "B, ' ; M
..... Pythia8 o isf — 3
00 g " e 3
105 0% 0001 0010 0.100 Y ) A

N =3 =3 > =
w U —

= d x

Born after discussions at BOOST 2013.
In the recent years, very precise calculations [e.g. Frye, Larkoski, Schwartz,Yan (2016)]
compared to precise measurement [e.g. ATLAS Phys. Rev. Lett. 121 (2018) 092001]
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Outline

Selected topics
The Lund Jet Plane
Quark/gluon discrimination
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The Lund plane

soft

Jet substructure
00000000000000000

Selected topics
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Powerful way of depicting the pattern of QCD radiation.
We have already used the (6, z) version, but (0, k; = z0) is also possible.

. Q‘AI\A
GO\\\&\
. X
0%7
A °

. — collinear

Soft and collinear in ortogonal directions

G. Stagnitto (UniMiB & INFN)

1
log 97

log(z6)

)
oy
L

soft collinear
region

UoiBe1 o[buE—0BIe] 4OS

large angles small angles

non-perturbative (small k')

The Lund plane may constitute an observable itself!

BOOST Camp 2024 (theory)

log(1/6)

Conclusions

0000

The non-pertubative region in the bottom
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The Lund Jet Plane

The Lund Jet plane
First decluster the jet with C/A. For each step of the declustering, involving pseudo-jets a and
b with p;q > pts, we record the variables:

Peb
A=Du = Vo= 9+ (0o — )% ki =prpBap, 2= ———
Dta T Pib
and we plot them in the Lund (In1/A,Ink;) or (In1/A,Iln1/z) plane.
(b) (b)
g (a) (a) ()
= ~ (c) ~
We have a primary Lund plane (if related to an = =
emission off the hardest branch), possibly é
branching into a secondary, tertiary, etc. Lund g
plane. 2
In /A ‘ In /A

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory) 36/46
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Lund Jet plane for precision QCD

Lund plane density, defined as:

1 dnemissions
AR = Tk dIn /A

with Nje the total number of jets. At leading order we
have:

2045]6 C'Z
pl:%7 C1q:C’chVg:C’A

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory)
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QCD jets, averaged primary Lund plane

Vs =14TeV, p;>2 TeV
Pythia8.230(Monash13)

on-perturbative

0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 40 45 5.0
In(R/A)

B S|

00 01 02 03 04 05 06 07 08 0.9
p(B, ke)
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The Lund Jet Plane
Lund Jet plane for precision QCD
Lund Jet plane density measured at the LHC and precisely calculated!
R oot ontp omso CMS Preliminary 13§'b"‘(13TIeV) ATLAS setup: 0.147 <A < 0.205
3 T AK4 jets
Si; [ATLAS (2004.0354)] 00 E . - )‘maevl S & ATLAS
s os T 10? T - g == NLO+resum+NP
i b Y ;
g "o s o B2 L3
g 5 3 ® 3 gE 1 )
¢ S S S oIl 3 |
& S X2 lF 4 :
~ i £ 04 I3 ' !
10" % ! v_|Zi ' w ’
“z 0.2 d
2 1 o is
= o
o 05 1 15 2 25 3 35 4 ° ¢ 2007.06578
152 25 3 ag 4L In(R/A R) 0.1 0.2 0.5
. " =] ] z
1" AR = aR(emission, core) 10 AR " esun NLO

G. Stagnitto (UniMiB & INFN)
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The Lund Jet Plane

Lund Jet plane for signal/background discrimination

; QCD jets, averaged primary Lund plane W jets, averaged primary Lund plane QCD rejection v. W tagging efficiency

Vs=14TeV, p,>2TeV Vs =14TeV, p>2TeV Pythia 8.223 simulation
6 Pythia8.230(Monash13) Pythias.230(Monash13) signal: pp - WW, background: pp—jj
10000 - antik; R=1jets, pe>500 GeV
5
a (2012.08526)]
33 3 1000
g 9
£ S g
g
! 100 4
0
- — LundNet-5
2 5 10 - {undNet-3
00 05 1.0 15 2.0 2.5 3.0 35 40 45 5.0 00 05 1.0 L5 2.0 25 30 35 4.0 45 50 = ReCNERE 20
In(1/8) In(1/8) —— Lund+LSTM (DSS '18)
— ParticleNet (QG '19)
0.0 02 04 06 08 0.0 0.2 0.4 0.6 08 00 01 02 03 04 05 0.6 07 08 09 1.0
(B, k) Ps(8, k) w

Lund plane images look differently between background and signal jets!
Lund images and trees can be adopted as theory-friendly input to machine learning models,
even reaching state-of-the-art performances.

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory)
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Quark/gluon discrimination

Quark- vs. gluon-jet discrimination

Disentangle jets that can be thought of as originating from the fragmentation
of a high-energy quark from the ones originating from a gluon.

Important either as observable (precision « studies, PDF extraction)
or as tool (isolation of specific production channels, search of new physics).

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory) 40/46
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Quark/gluon discrimination

What is a quark jet?

The proper definition is not free from ambiguities

lll-Defined What people A quark parton
sometimes
think we mean A Born-level quark parton
4 The initiating quark parton in a final state shower

Quark

as noun An eikonal line with baryon number 1/3
and carrying triplet color charge
A quark operator appearing in a hard matrix element
in the context of a factorization theorem
A parton-level jet object that has been quark-tagged
using a soft-safe flavored jet algorithm (automatically
collinear safe if you sum constituent flavors)

Quark

as adjective A phase space region (as defined by an unambiguous
3 hadronic fiducial cross section measurement) that yields

an enriched sample of quarks (as interpreted by some
Well-Defined ~ What we mean suitable, though fundamentally ambiguous, criterion)

(from Les Houches workshop 2015)
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The simplest q/g discriminant

The now familiar jet mass offers a possible discriminant:

1
—lo

Salp) = exp [

0000000000000 0000
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g’ ﬂ 2¢(p) = exp {

asCA

1 1
Lo ]
2 p

The cumulative distributions for q/g only differ by the colour (Casimir) factor.

The ROC curve is given by:
€g = 29(251(&1)) = (5q)CA/CF

This feature is called Casimir scaling
and provides a benchmark for
expectation when using more

sophisticated taggers (e.g.
angularities)
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Signal (quark) efficiency g,
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Outline

Conclusions
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What | haven't talked about
| hope | provided you with enough background to understand the talks of this week, but

notable omissions are:
® Energy-Energy Correlators (EEC)

® Track Functions
® Physics-aware tools to interpret what Machine Learning gives us
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What | haven't talked about

| hope | provided you with enough background to understand the talks of this week, but
notable omissions are:

® Energy-Energy Correlators (EEC)
Long tradition, but renewed interest in the community

5, o
@_2/ 50— 6i5) ~ (W |€ (1) € ()| )

correlation functions of energy flow operators
(see Kyle Lee's theory overview talk BOOST 2023)

® Track Functions

® Physics-aware tools to interpret what Machine Learning gives us
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What | haven't talked about

| hope | provided you with enough background to understand the talks of this week, but
notable omissions are:
® Energy-Energy Correlators (EEC)
® Track Functions
Describe fragmentation of a parton into a subset of final state hadrons
They naturally encode multi-hadron fragmentation

. Til ('El)
11

7‘72 (ZZ)

. imfl
T,im—l(szl)
T...(zm)

Kiiisan

im

(Chang, Procura, Thaler, Waalewijn (2013))
® Physics-aware tools to interpret what Machine Learning gives us
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What | haven't talked about

| hope | provided you with enough background to understand the talks of this week, but
notable omissions are:

® Energy-Energy Correlators (EEC)
® Track Functions
® Physics-aware tools to interpret what Machine Learning gives us

Energy Flow Polynomials (EFP), Energy Flow Networks (EFN), Energy Mover's Distance
(EMD), etc. [Komiske, Metodiev, Thaler, et al.]

'

e .-
..

EFPG = Z Z Zip " RN H Oim

i1=1 in=1 (k0)eG

EMD: 150.3 GeV
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What | haven't talked about

| hope | provided you with enough background to understand the talks of this week, but
notable omissions are:

® Energy-Energy Correlators (EEC)

® Track Functions

® Physics-aware tools to interpret what Machine Learning gives us
Moreover, | haven't mentioned:

® Monte Carlo developments (more accurate parton showers, ...)

® (Calculations of jet substructure observables in SCET

® Heavy quarks

® Jet substructure in heavy ion environment
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If you want to know more...

Lecture Notes in Physics 958

Simone Marzani
Gregory Soyez
Michael Spannowsky

Looking

Inside Jets

An Introduction to Jet Substructure
and Boosted-object Phenomenology

arXiv:1901.10342 (188 pages)
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QCD Masterclass Lectures on Jet Physics and Machine Learning

Andrew J. Larkoski
Email: larkoa@gmail . com

July 9, 2024

Abstract
nted at the 2024 QCD Masterclass in Saint-Jacut-de-la-Mer, Franc

These lectures were pres

focused on application to jet identification and dis-
crimination. Numerous examples of binary discrimination in jet physics are studied in detail,
including H — bb identification in fixed-order perturbation theory, generic one- versus two-prong
discrimination with parametric power counting techniques, and up versus down quark jet classi-
fication by assuming the central limit theorem, isospin conservation, and a convergent moment
expansion of the single particle energy distribution. Quark versus ghuon jet discrimination is
considered in multiple contexts, from using additive, infrared and collinear safe observables, to
using hadronic multiplicity, and to including measurements of the jet charge. While many of
the results presented here are well known, some novel results are presented, the most prominent
being a parametrized expression for the likelihood ratio of quark versus ghion discrimination for
Jets on which hadronic multiplicity and jet charge are si measured. End

exercises are also provided.

arXiv:2407.04897 (130 pages)

G. Stagnitto (UniMiB & INFN) BOOST Camp 2024 (theory)
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Enjoy BOOST 2024!

Boccadasse neighbourhood, Genoese for " donkey’s mouth” ...
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Enjoy BOOST 2024!

. which after the appearance of the Lund plane fish has been called
Boostadasse neighbourhood, Genoese for "donkey’s boost”
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