Andrea Simonelli

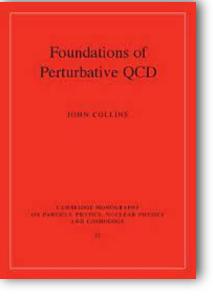
Hidden soft effects from TMD extractions

00000

TMD Factorization

Standard processes:

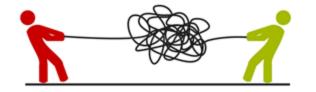
- Drell-Yan $pp \rightarrow e^+e^- X$
- SIDIS $e^-p \rightarrow e^-h X$
- Double-Inclusive Annihilation (DIA) $e^+e^- \rightarrow h_1h_2 X$



TMD Factorization

$$d\sigma = \mathcal{H} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} \mathcal{D}_A(z_A, b_T; y_A - y_n) \times \mathcal{D}_\mathcal{B}(z_B, b_T; y_n - y_B)$$

Always two TMDs that have to be extracted *simultaneously*



A process with a **single hadron** may offer a cleaner access to TMD (FFs)

Single-Inclusive Annihilation (SIA)

 \mathbf{P}_{h}

The transverse momentum of the detected hadron is measured w.r.t. the thrust axis

$$z_h = \frac{E}{Q/2}, \quad T = \frac{\sum_i |\vec{P}_{(\text{c.m.}), i} \cdot \hat{n}|}{\sum_i |\vec{P}_{(\text{c.m.}), i}|}, \quad P_T \text{ w.r.t } \vec{n}$$

This process is **non**-standard!!

Soft Radiation Revealed

$$d\sigma = \mathcal{H} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} \mathcal{D}_A(z_A, b_T; y_A - y_n) \times \mathcal{D}_B(z_B, b_T; y_n - y_B)$$

... it actually comes from the **re-arranging** of:

$$d\sigma = \mathcal{H} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} \mathcal{D}_A^{\star}(z_A, b_T; y_A - y_1) \times \underbrace{\mathcal{S}(b_T; y_1 - y_2)}_{\mathbb{A}} \times \mathcal{D}_B^{\star}(z_B, b_T; y_2 - y_B)$$
2-h Soft Factor correlating
the two collinear groups

$$d\sigma = \mathcal{H} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} \underbrace{\mathcal{D}_A^{\star}(z_A, b_T; y_A - y_1)}_{\mathcal{S}(b_T; y_1 - y_2)} \times \underbrace{\mathcal{D}_B^{\star}(z_B, b_T; y_2 - y_B)}_{\mathcal{S}(b_T; y_1 - (-\infty))} \times \mathcal{S}(b_T; y_1 - y_2) \times \underbrace{\frac{\mathcal{D}_B^{\text{uns.}}(z_B, b_T; \infty - y_B)}{\mathcal{S}(b_T; y_1 - (-\infty))}}_{\mathcal{S}(b_T; y_1 - (-\infty))} \times \underbrace{\mathcal{S}(b_T; y_1 - y_2)}_{\mathcal{S}(b_T; \infty - y_2)}$$

With:

$$\mathcal{D}^{\text{uns.}}(z, b_T; y_{\text{had}} - (-\infty)) = \frac{\text{Tr}_C}{N_C} \frac{\text{Tr}_D}{4} \sum_X \frac{1}{z} \int \frac{dx^-}{2\pi} e^{ik^+x^-} \\ \langle 0 | \gamma^+ W_{(-))} \left(x/2 \to \infty \right) \psi_j \left(x/2 \right) | P; X \rangle \langle P; X | \overline{\psi}_j \left(-x/2 \right) W_{(-))}^{\dagger} \left(-x/2 \to \infty \right) | 0 \rangle$$

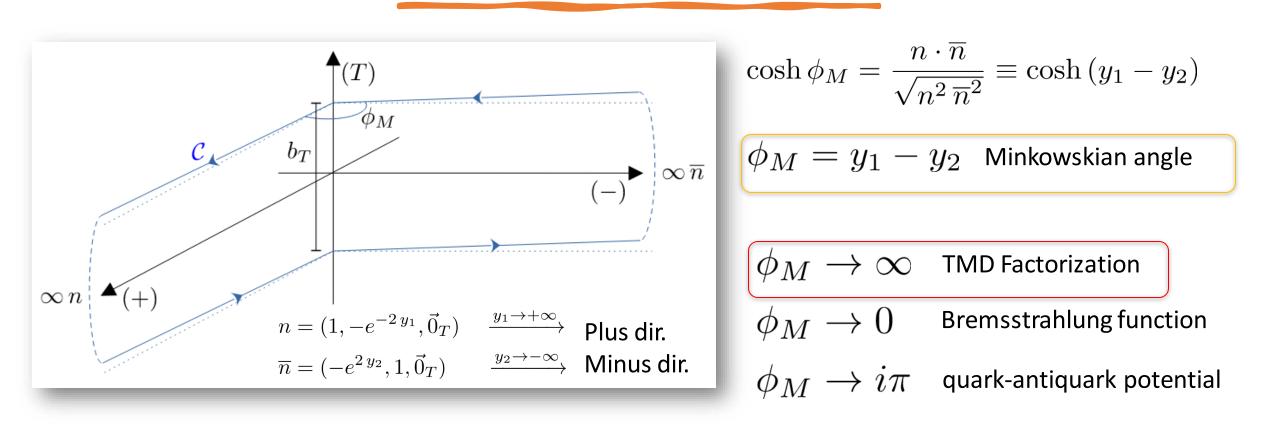
$$d\sigma = \mathcal{H} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} \mathcal{D}^{\star}_A(z_A, b_T; y_A - y_1) \times \mathcal{S}(b_T; y_1 - y_2) \times \mathcal{D}^{\star}_B(z_B, b_T; y_2 - y_B)$$

$$\frac{\mathcal{D}_{A}^{\text{uns.}}(z_{A}, b_{T}; y_{A} - (-\infty))}{\mathcal{S}(b_{T}; y_{1} - (-\infty))} \times \underbrace{\mathcal{S}(b_{T}; y_{1} - y_{2})}_{\mathbf{S}(b_{T}; y_{1} - (-\infty))} \times \underbrace{\mathcal{D}_{B}^{\text{uns.}}(z_{B}, b_{T}; \infty - y_{B})}_{\mathcal{S}(b_{T}; \infty - y_{2})}$$

$$\underbrace{\mathsf{Morane functional form!}}_{\mathbf{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data production for the constructions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data production for the constructions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data production for the constructions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data production for the constructions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolution}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data productions with QCD Evolutions}}_{\mathcal{S}(b_{T}; \omega - y_{2})} \times \underbrace{\mathsf{Morane data p$$

• Evolution $\mathcal{S}(y_A, y_C) \propto \mathcal{S}(y_A, y_B) \mathcal{S}(y_B, y_C)$

Soft Factor



$$\mathcal{S}(b_T,\phi_M) = \frac{\mathrm{Tr}}{N} \langle 0|W_{\mathcal{C}}(b_T,\phi_M)|0\rangle = \frac{\mathrm{Tr}}{N} \mathcal{P} Z_S \langle 0|e^{-ig_0} \oint_{\mathcal{C}} dx^{\mu} A^{(0),a}_{\mu}(x) t_a |0\rangle$$

QCD cusp anomalous dimension: current status Andrey Grozin (Novosibirsk, IYF) (Dec 10, 2022) e-Print: 2212.05290 [hep-ph]

$$\begin{split} \Gamma &= 4C_R \frac{\alpha_s}{4\pi} \bigg\{ \varphi \coth \varphi - 1 + \frac{\alpha_s}{4\pi} \bigg[C_A \bigg[\frac{2}{3} \pi^2 - \frac{49}{9} + 2\varphi^2 \\ &+ \coth \varphi \bigg(2 \operatorname{Li}_2(e^{-2\varphi}) - 4\varphi \log(1 - e^{-2\varphi}) - \frac{\pi^2}{3} - \frac{2}{3} \pi^2 \varphi + \frac{67}{9} \varphi - 2\varphi^2 - \frac{2}{3} \varphi^3 \bigg) \\ &+ \coth^2 \varphi \bigg(2 \operatorname{Li}_3(e^{-2\varphi}) + 2\varphi \operatorname{Li}_2(e^{-2\varphi}) - 2\zeta_3 + \frac{\pi^2}{3} \varphi + \frac{2}{3} \varphi^3 \bigg) \bigg] \\ &- \frac{20}{9} T_F n_f(\varphi \coth \varphi - 1) \bigg] + \mathcal{O}(\alpha_s^2) \bigg\} \\ &= 4C_R \frac{\alpha_s}{4\pi} \bigg\{ \varphi \coth \varphi - 1 \\ &+ \frac{\alpha_s}{4\pi} \bigg[C_A \bigg[2 \bigg(1 + \frac{2}{3} \varphi^2 \bigg) - \frac{1}{3} (\varphi \coth \varphi - 1) \bigg(2\pi^2 - \frac{67}{3} + 2\varphi^2 \bigg) \\ &+ \coth \varphi (\varphi \coth \varphi + 1) \big(\operatorname{Li}_2(1 - e^{2\varphi}) - \operatorname{Li}_2(1 - e^{-2\varphi}) \big) \\ &- 2 \coth^2 \varphi \big(\operatorname{Li}_3(1 - e^{2\varphi}) + \operatorname{Li}_3(1 - e^{-2\varphi}) \big) \bigg] \bigg\} \end{split}$$

$$(4.2)$$

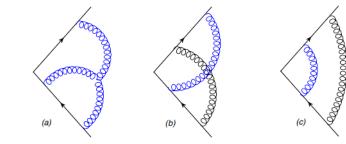
Non-Abelian Exponentiation Theorem

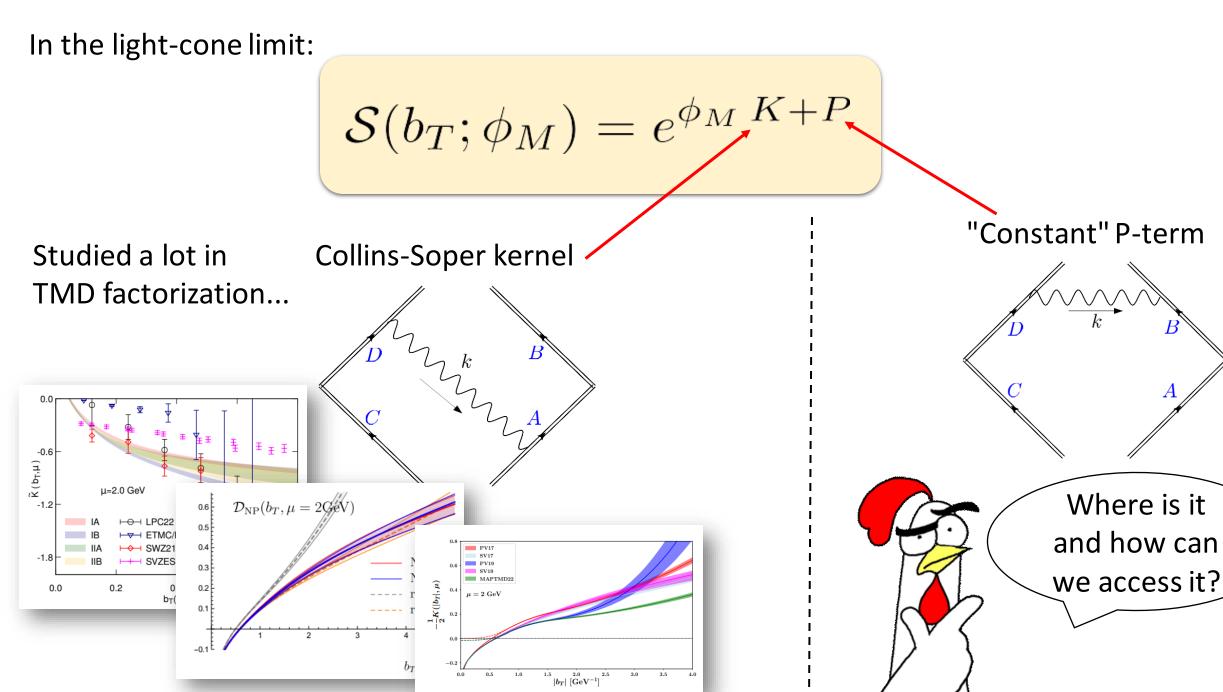
See works by E. Gardi, E. Leanen, L. Magnea, C. White etc...

Webs in multiparton scattering using the replica trick

Einan Gardi (Edinburgh U.), Eric Laenen (Amsterdam U. and Utrecht U. and NIKHEF, Amsterdam), Ge Stavenga (Fermilab), Chris D. White (Glasgow U. and Durham U., IPPP and Durham U.) (Aug, 2010) Published in: *JHEP* 11 (2010) 155 • e-Print: 1008.0098 [hep-ph]

Dol 🗔 cite 🗟 claim 🖪 reference search 🕤 112 cita





The P-terms **disappear** in the standard TMD factorization...

$$\frac{\mathcal{D}_{A}^{\text{uns.}}(z_{A}, b_{T}; y_{A} - (-\infty))}{\mathcal{S}(b_{T}; y_{1} - (-\infty))} \times \mathcal{S}(b_{T}; y_{1} - y_{2}) \times \frac{\mathcal{D}_{B}^{\text{uns.}}(z_{B}, b_{T}; \infty - y_{B})}{\mathcal{S}(b_{T}; \infty - y_{2})}$$
$$= \frac{\mathcal{D}_{A}^{\text{uns.}}(z_{A}, b_{T}; y_{A} - (-\infty))}{e^{(y_{1} - (-\infty))K + \frac{1}{2}P}} \times e^{(y_{1} - y_{2})K + R} \times \frac{\mathcal{D}_{B}^{\text{uns.}}(z_{B}, b_{T}; \infty - y_{B})}{e^{(\infty - y_{2})K + \frac{1}{2}P}}$$

...as well as in the standard TMD definition:

$$D(y_{\text{had}} - y_1) = D^{\text{uns.}}(y_{\text{had}} - (-\infty))\sqrt{\frac{\mathcal{S}(\infty - y_1)}{\mathcal{S}(\infty - (-\infty))\mathcal{S}(y_1 - (-\infty))}}$$

$$e^{(\infty - y_1)K + \frac{1}{2}R}$$

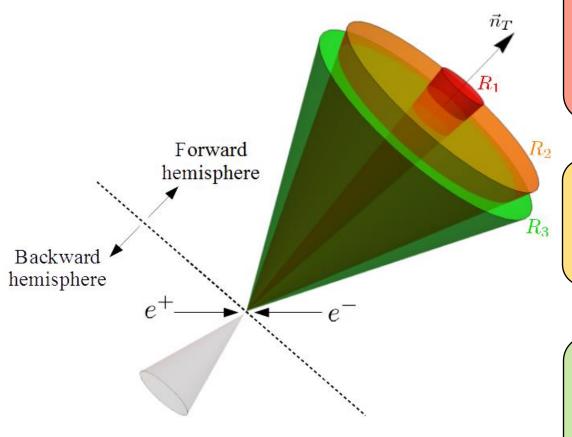
The standard definition is optimal for standard TMD factorization.

$$= D^{\text{uns.}}(y_{\text{had}} - (-\infty)) \sqrt{\frac{e^{(\infty - y_1)K + \frac{1}{2}P}}{e^{(\infty - (-\infty))K} e^{(y_1 - (-\infty))K + \frac{1}{2}P}}}$$

We can forget about the existence of the P-term in the standard cases.

This is a naïve proof! Actual proof requires to > modify also the unsubtracted TMDs

Soft Radiation in SIA (thrust)



The hadron is detected very close to the **axis** of the jet.

 \Box Extremely small P_T

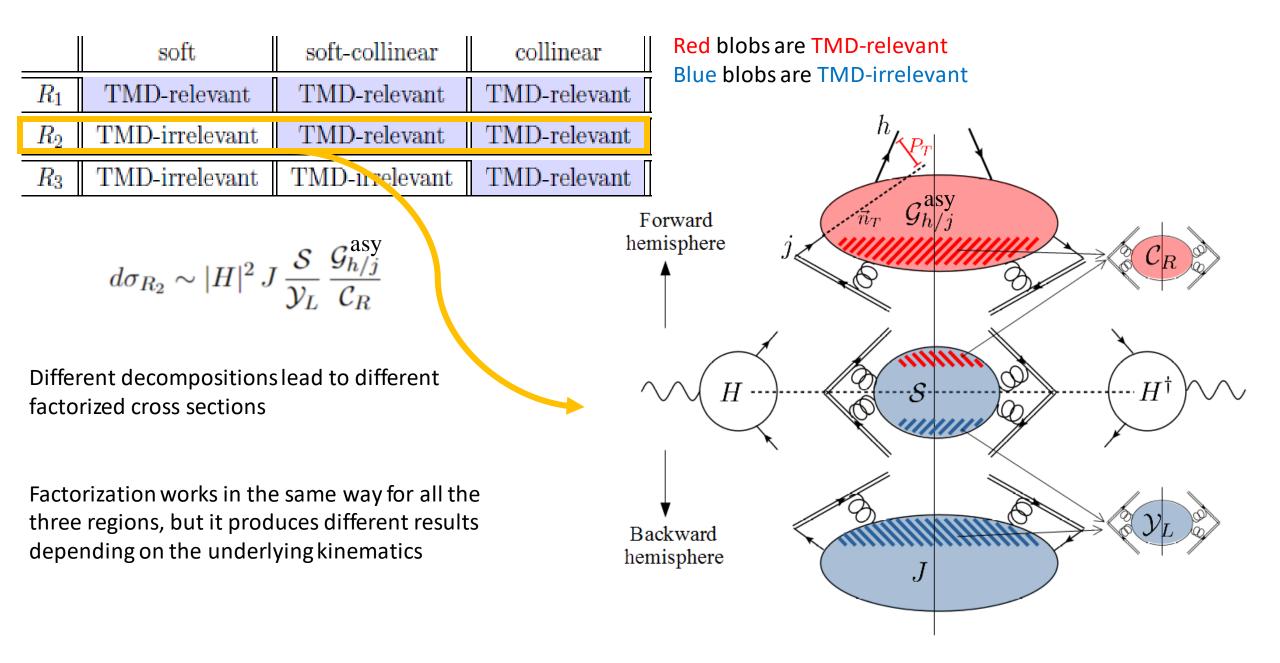
Soft radiation affects significantly the transverse deflection of the hadron from the thrust axis

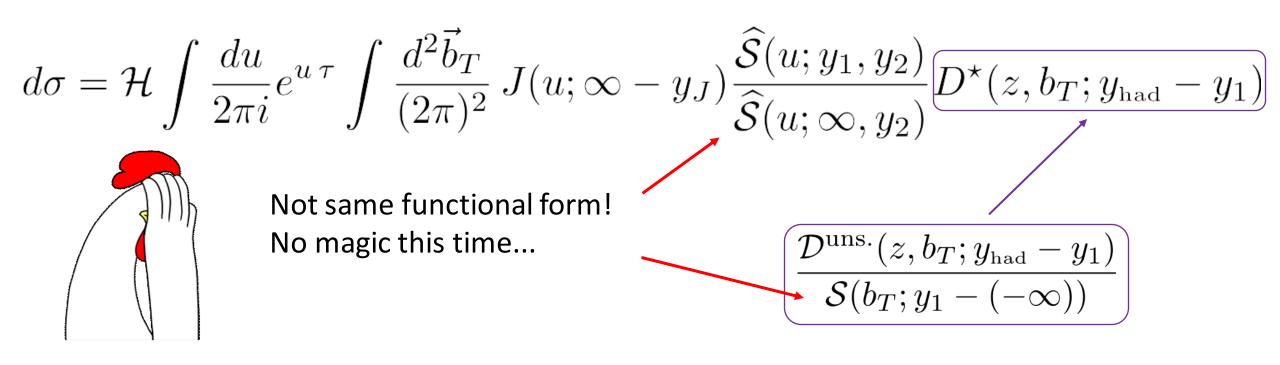
The hadron is detected in the central region of the jet.
Most common scenario
Majority of experimental data expected to fall into this case

The hadron is detected near the **boundary** of the jet.

- □ Moderately small P_T
- The hadron transverse momentum affects the topology of the final state directly

The three regions are uniquely determined by the specific role of **soft** and **soft-collinear** radiation:





We are forced to use the definition* when we go beyond the standard processes

• More universal

No extra soft contamination

• Inclusion of P-term effects

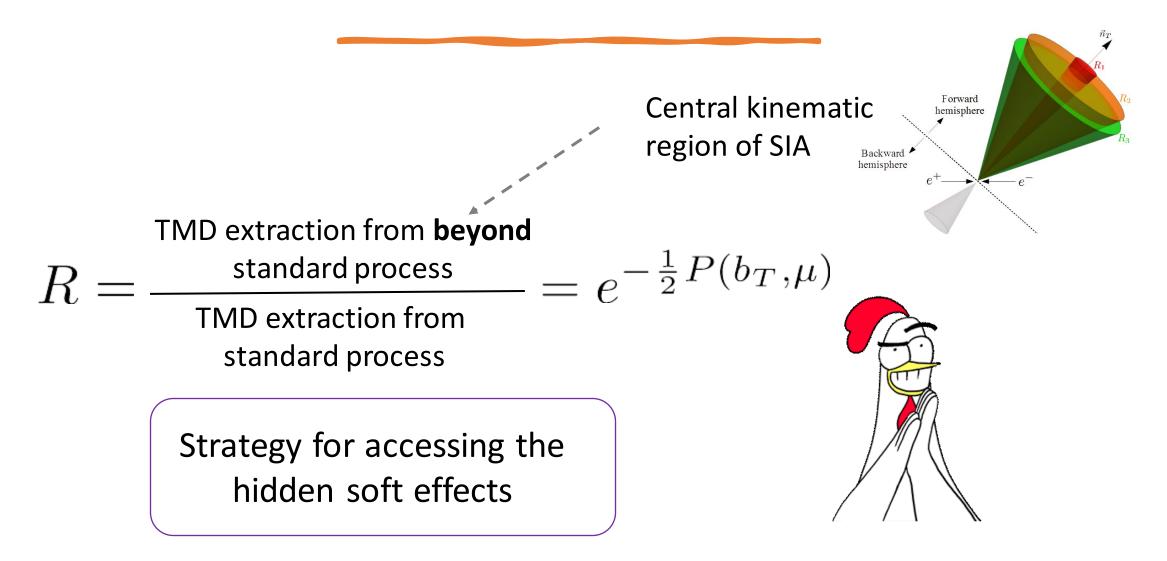
Exploration of new physics!

P-term from definition comparison

From comparing **operators**:

$$\mathcal{D}^{\star}(z, b_T; y_{\text{had}} - y_1) = \mathcal{D}(z, b_T; y_{\text{had}} - y_1) e^{-\frac{1}{2}P(b_T)}$$

P-term from extraction comparison



P-terms from SIA cross sections are:

$$d\sigma_{R_2} \propto e^{I_R(u,y_1) - \frac{1}{2}P(b_T)} = e^{I_R|_{\mu_R} - \frac{1}{2}P|_{\mu_b} - \frac{1}{2}\int_{\mu_R}^{\mu_b} \frac{d\mu'}{\mu'}\gamma_P(a_S(\mu'))}$$
(right) counterpart of P in
the thrust sector
Non-Perturbative
behavior of the P-term

CSS approach:
$$P(b_T, \mu) = P(a_S(\mu_b^{\star})) - \int_{\mu_b^{\star}}^{\mu} \frac{d\mu'}{\mu'} \gamma_P(a_S(\mu')) - \left(g_P(b_T)\right)$$

However, within the approximations of

 $d\sigma_{\mathrm{R}_2} \propto e^{\frac{1}{2}g_P(b_T)}$

Full treatment of the thrust distribution in single inclusive $e^+e^- \rightarrow h X$ #1processesM. Boglione (Turin U. and INFN, Turin), A. Simonelli (Old Dominion U. and Jefferson Lab) (Jun 5, 2023)Published in: JHEP 09 (2023) 006 • e-Print: 2306.02937 [hep-ph]DolPdfODICiteClaimClaimClaimPublished in: JHEP 09 (2023) 006 • e-Print: 2306.02937 [hep-ph]

This is the combination effectively extracted in

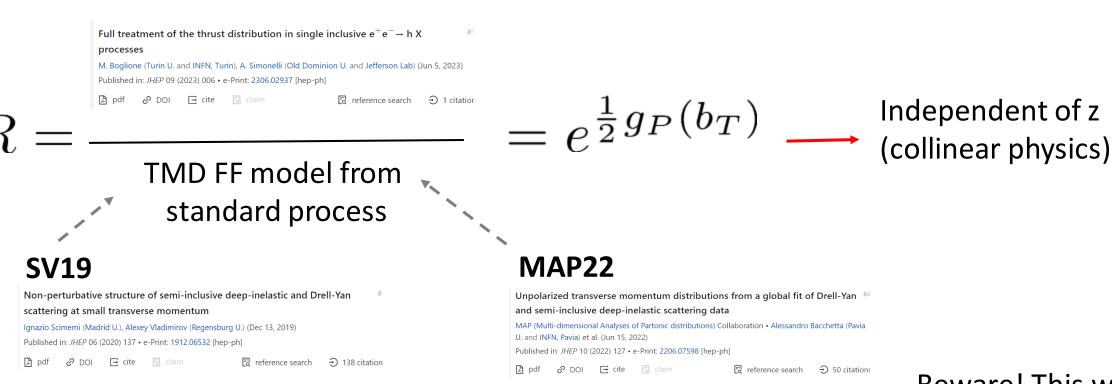
Full treatment of the thrust distribution in single inclusive $e^+e^- \to h \; X \eqref{eq:alpha}$ processes

M. Boglione (Turin U. and INFN, Turin), A. Simonelli (Old Dominion U. and Jefferson Lab) (Jun 5, 2023) Published in: *JHEP* 09 (2023) 006 • e-Print: 2306.02937 [hep-ph]

🕒 pdf 🥜 DOI 🖃 cite 🗒 claim

 ${ar{
m E}}_{
m C}$ reference search ${\ensuremath{ ext{ }}}$ 1 citation

Making "predictions"



Beware! This would be an extraction of an extraction!

Comparison with SV19

Full treatment of the thrust distribution in single inclusive $e^+e^- \rightarrow h X$ #1 processes

M. Boglione (Turin U. and INFN, Turin), A. Simonelli (Old Dominion U. and Jefferson Lab) (Jun 5, 2023) Published in: *JHEP* 09 (2023) 006 • e-Print: 2306.02937 [hep-ph]

🔓 pdf 🕜 DOI 🖃 cite 🕞 claim

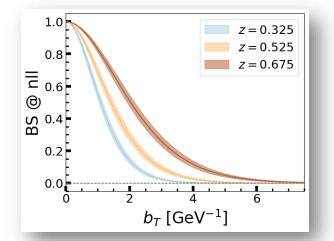
 \Box reference search \bigcirc 1 citation

$$M_D(z, b_T) = \frac{2}{\Gamma(p(z) - 1)} \left(\frac{b_T m(z)}{2}\right)^{p(z) - 1} K_T$$

$$K_{p(z)-1}\left(b_T \, m(z)\right)$$

4 free parameters

2 free parameters



Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum

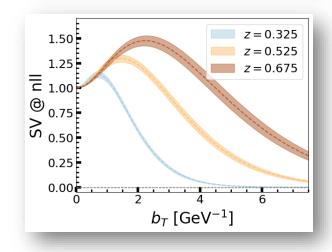
Ignazio Scimemi (Madrid U.), Alexey Vladimirov (Regensburg U.) (Dec 13, 2019) Published in: *JHEP* 06 (2020) 137 • e-Print: 1912.06532 [hep-ph]

🗜 pdf 🕜 DOI 🖃 cite 🕞 claim

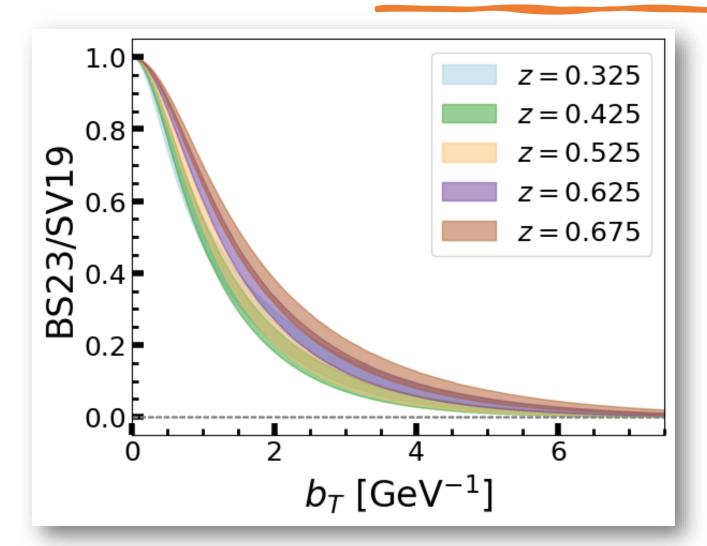
 \Box reference search \bigcirc 138 citation

#

$$D_{NP}(x,b) = \exp\left(-\frac{\eta_1 z + \eta_2(1-z)}{\sqrt{1+\eta_3(b/z)^2}}\frac{b^2}{z^2}\right)\left(1+\eta_4\frac{b^2}{z^2}\right)$$



Comparison with SV19



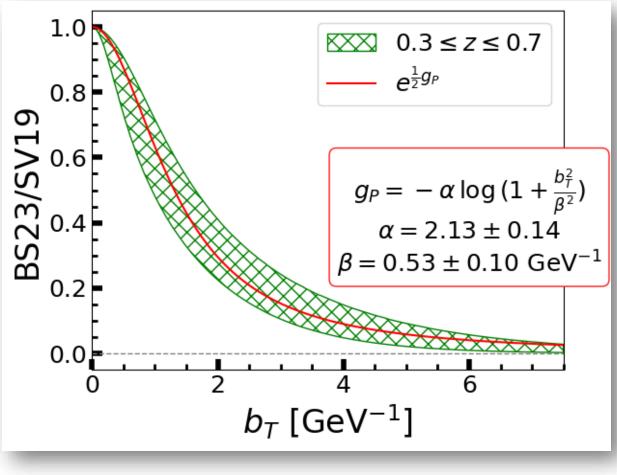
z-independence

Keep in mind that:

- Very different functional forms at numerator and denominator
- Extractions from completely different data sets (BELLE vs SIDIS/DY)

Comparison with SV19

Spread of error bands can be used to constraint the "extraction" of g_P



Comparison with MAP22

Full treatment of the thrust distribution in single inclusive $e^+e^- \rightarrow h X$ #1 processes

M. Boglione (Turin U. and INFN, Turin), A. Simonelli (Old Dominion U. and Jefferson Lab) (Jun 5, 2023) Published in: JHEP 09 (2023) 006 • e-Print: 2306.02937 [hep-ph]

🔓 pdf 🕜 DOI 🖃 cite 🕞 claim

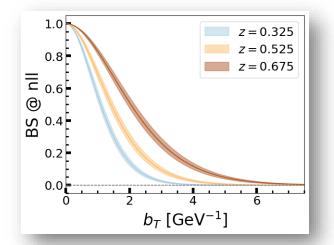
 \Box reference search \bigcirc 1 citation

$$M_D(z, b_T) = \frac{2}{\Gamma(p(z) - 1)} \left(\frac{b_T m(z)}{2}\right)^{p(z) - 1}$$

$$K_{p(z)-1}\left(b_T \, m(z)\right)$$

2 free parameters

9 free parameters

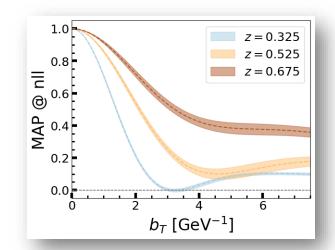


Unpolarized transverse momentum distributions from a global fit of Drell-Yan ^{#//} and semi-inclusive deep-inelastic scattering data MAP (Multi-dimensional Analyses of Partonic distributions) Collaboration • Alessandro Bacchetta (Pavia U. and INFN, Pavia) et al. (Jun 15, 2022)

Published in: JHEP 10 (2022) 127 • e-Print: 2206.07598 [hep-ph]

🔄 pdf 🕜 DOI 🖃 cite 🗔 claim 🗔 reference search 🕣 50 citations

$$D_{1\,NP}(z,\boldsymbol{b}_{T}^{2};\zeta,Q_{0}) = \frac{g_{3}(z)\,e^{-g_{3}(z)\frac{\boldsymbol{b}_{T}^{2}}{4z^{2}} + \frac{\lambda_{F}}{z^{2}}\,g_{3B}^{2}(z)\left[1 - g_{3B}(z)\frac{\boldsymbol{b}_{T}^{2}}{4z^{2}}\right]e^{-g_{3B}(z)\frac{\boldsymbol{b}_{T}^{2}}{4z^{2}}}}{g_{3}(z) + \frac{\lambda_{F}}{z^{2}}\,g_{3B}^{2}(z)}$$



Comparison with MAP22

Full treatment of the thrust distribution in single inclusive $e^+e^- \rightarrow h X$ # processes

M. Boglione (Turin U. and INFN, Turin), A. Simonelli (Old Dominion U. and Jefferson Lab) (Jun 5, 2023) Published in: JHEP 09 (2023) 006 • e-Print: 2306.02937 [hep-ph]

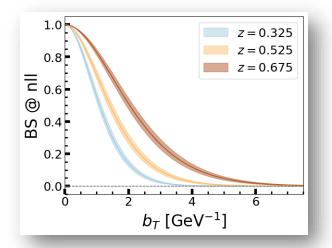
2 DOI 🔁 cite 📑 claim 月 pdf

 \Box reference search \bigcirc 1 citation

$$M_D(z, b_T) = \frac{2}{\Gamma(p(z) - 1)} \left(\frac{b_T m(z)}{2}\right)^{p(z) - 1} K_{p(z) - 1} \left(b_T m(z)\right)$$

$$K = (h - m(x))$$

2 free parameters



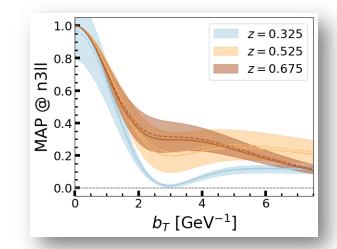
Unpolarized transverse momentum distributions from a global fit of Drell-Yan #4 and semi-inclusive deep-inelastic scattering data MAP (Multi-dimensional Analyses of Partonic distributions) Collaboration • Alessandro Bacchetta (Pavia U. and INFN, Pavia) et al. (Jun 15, 2022)

9 free parameters

Published in: JHEP 10 (2022) 127 • e-Print: 2206.07598 [hep-ph]

🤗 DOI 🔁 cite 🗟 claim A pdf reference search

$$D_{1\,NP}(z,\boldsymbol{b}_{T}^{2};\zeta,Q_{0}) = \frac{g_{3}(z)\,e^{-g_{3}(z)\frac{\boldsymbol{b}_{T}^{2}}{4z^{2}} + \frac{\lambda_{F}}{z^{2}}\,g_{3B}^{2}(z)\left[1 - g_{3B}(z)\frac{\boldsymbol{b}_{T}^{2}}{4z^{2}}\right]e^{-g_{3B}(z)\frac{\boldsymbol{b}_{T}^{2}}{4z^{2}}}}{g_{3}(z) + \frac{\lambda_{F}}{z^{2}}\,g_{3B}^{2}(z)}$$



Comparison with MAP22

