TMD phenomenology with the HSO approach

Tommaso Rainaldi – Old Dominion University GFI 2nd miniworkshop Oasi di Cavoretto, Torino, Italy September 20 2023

Based on

- The resolution to the problem of consistent large transverse momentum in TMDs (PhysRevD.107.094029)

• (J. O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers)

- Combining nonperturbative transverse momentum dependence with TMD evolution (PhysRevD.106.034002)

• (J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato)

Predicting transverse momentum distributions in **cross sections** after evolution to **high energies**

Factorization theorems

Evolution equations

SIDIS

Pertubative and nonperturbative TM

Conventional approach :

$$H \int d^{2}\boldsymbol{k}_{1T} d^{2}\boldsymbol{k}_{2T} f_{j/p}\left(x, \boldsymbol{k}_{1T}; \mu, \sqrt{\zeta}\right) D_{h/j}\left(z, z\boldsymbol{k}_{2T}; \mu, \sqrt{\zeta}\right) \delta^{(2)}\left(\boldsymbol{q}_{T} + \boldsymbol{k}_{1T} - \boldsymbol{k}_{2T}\right)$$
Fourier Transform
$$H \int \frac{d^{2}\boldsymbol{b}_{T}}{(2\pi)^{2}} e^{-i\boldsymbol{b}_{T}\cdot\boldsymbol{q}_{T}} \tilde{f}_{j/p}\left(x, \boldsymbol{b}_{T}; \mu, \sqrt{\zeta}\right) \tilde{D}_{h/j}\left(z, \boldsymbol{b}_{T}; \mu, \sqrt{\zeta}\right)$$

Choose ansatzes for g functions

$$g_{j/p}\left(x,\boldsymbol{b}_{\mathrm{T}}\right) = \frac{1}{4}M_F^2 b_{\mathrm{T}}^2$$

$$g_{h/j}(z, \boldsymbol{b}_{\mathrm{T}}) = \frac{1}{4z^2} M_D^2 b_{\mathrm{T}}^2$$

$$g_K \left(\boldsymbol{b}_{\mathrm{T}} \right) = \frac{g_2}{2M_K^2} \ln \left(1 + M_K^2 b_{\mathrm{T}}^2 \right)$$

$$g_K \left(\boldsymbol{b}_{\mathrm{T}} \right) = \frac{1}{2} M_K^2 b_{\mathrm{T}}^2$$

Relate μ_{b_*} with input scale Q_0 and get OPE expansion $\tilde{f}_{j/p}\left(x; \boldsymbol{b}_{\mathrm{T}}; \mu_{Q}, Q\right) = \left| \tilde{f}_{j/p}^{\mathrm{OPE}}\left(x; \boldsymbol{b}_{*}; \mu_{b_{*}}, \mu_{b_{*}}\right) \right| \times$ $\times \left[\exp\left\{ \int_{\mu_{b_*}}^{\mu_Q} \frac{\mathrm{d}\mu'}{\mu'} \left[\gamma\left(\alpha_S(\mu'); 1\right) - \ln\left(\frac{Q}{\mu'}\right) \gamma_K\left(\alpha_S(\mu')\right) \right] + \ln\left(\frac{Q}{\mu_{b_*}}\right) \tilde{K}\left(\boldsymbol{b}_*; \mu_{b_*}\right) \right\} \right]$ $\times \exp\left\{-g_{j/p}\left(x, \boldsymbol{b}_{\mathrm{T}}\right) - g_{K}\left(\boldsymbol{b}_{\mathrm{T}}\right)\ln\left(\frac{Q}{Q_{0}}\right)\right\}$ Perturbatively Nonperturbative calculable Drop this $\tilde{f}_{j/p}^{\text{OPE}}(x, \boldsymbol{b}_{*}; \mu_{b_{*}}, \mu_{b_{*}}) = \tilde{C}_{j/j'}(x/\xi, \boldsymbol{b}_{*}; \mu_{b_{*}}, \mu_{b_{*}}) \otimes \tilde{f}_{j'/p}(\xi; \mu_{b_{*}}) + \mathcal{O}\left(m^{2}\boldsymbol{k}_{\text{max}}\right)$ Same for FF **Fixed order collinear factorization**

Consistency checks

TMDs are uniquely determined by their operatorial definition

$$H \int \mathrm{d}^{2} \boldsymbol{k}_{1\mathrm{T}} \mathrm{d}^{2} \boldsymbol{k}_{2\mathrm{T}} f_{j/p}\left(x, \boldsymbol{k}_{1\mathrm{T}}; \mu, \sqrt{\zeta}\right) D_{h/j}\left(z, z \boldsymbol{k}_{2\mathrm{T}}; \mu, \sqrt{\zeta}\right) \delta^{(2)}\left(\boldsymbol{q}_{\mathrm{T}} + \boldsymbol{k}_{1\mathrm{T}} - \boldsymbol{k}_{2\mathrm{T}}\right)$$

At large $q_T \sim Q$ the cross section is determined solely by fixed order collinear factorization

Similarly, at large TM (k_T) the TMDs are uniquely determined by an OPE expansion in terms of collinear PDFs/FFs $\frac{d}{db_{\max}} \frac{d\sigma}{dq_T^2 \dots} = 0$

Any auxiliary parameter cannot change the Physics (b_{max}/b_{min})

(Some) Issues with conventional approach

Unconstrained g functions

Large b_{max} dependence (Yukawa)

Other issues

- 1) Consistency tests will generally fail for a g-function ansatz unless constraints are imposed
- 2) Fixed order perturbation theory should work fine for $q_T \approx Q_0$, but evol. factors have a large effect. What is going on?
- 3) \exists no region at input scale $Q = Q_0$ where $\Lambda_{QCD} \ll q_T \ll Q_0$
- 4) Backwards evolution... No large, perturbative $\ln \frac{Q_0}{q_T}$.
- 5) $\int d^2 \mathbf{k}_T f_{j/p}(x, k_T; \mu_Q, Q^2) \approx f_{j/p}(x; \mu_Q)$

Very badly violated at moderate scales

Hadron Structure Oriented approach (HSO)

- $m (\bullet \ Fixes \ TMDs \ parametrization \ at \ input \ scale \ Q_0 \)$
- Uses uniquely determined TMDs for all transverse momenta
- Interpolates perturbative (large k_T) and nonperturbative (small k_T) TM regions
- Can swap NP models easily
- Explicit (approximate) probability interpretation

No need for b_{*} prescription !

Conventional approach results for SIDIS

Matching region ? $\Lambda_{\rm QCD} \ll q_{\rm T} \ll Q_0$

Conventional approach results for SIDIS Matching region ??? 10⁻² 1.0 **TMD**_{ST} TMD_{ST} dx dy dz dq $_{T}^{2}$ [GeV⁻⁴] x 10⁴ ASY_{ST} ASY_{ST} 10⁻³ $Q=Q_0=4$ GeV Q=Q₀=4 GeV FO_{ST} FOST 0.8 $|d\sigma$ / dx dy dz dq τ^2 | [GeV⁻⁴] $b_{max} = 1.0 \text{ GeV}^{-1}$ $b_{max} = 1.0 \text{ GeV}^{-1}$ 10-4 $M_F = 0.1 \text{ GeV}$ $M_F = 0.1 \text{ GeV}$ 0.6 $M_D/z = 0.1 \text{ GeV}$ $M_D/z = 0.1 \text{ GeV}$ 10⁻⁵ 0.4 10⁻⁶⊧ 1.1 11 x=0.1 0.2 z=0.3 x=0.1 z=0.3 10^{-7} y = 0.5Different trends y=0.5 10⁻⁸ 0.0 0.2 0.0 0.5 3.0 0.6 0.8 1.0 2.5 3.5 0.4 1.018 1.5 2.0 4.0 0.0q_T [GeV] q_T [GeV]

Conventional vs HSO - SIDIS cross section

Conventional

20

Conventional vs HSO - SIDIS cross section

Conventional

HSO (Gaussian)

The HSO setup

- Start with the perturbative expansion of the TMD and CS-kernel
- "Regularize" with mass (fit) parameter

$$k_T^2 \to k_T^2 + m^2$$

- Add "core" model (small k_T / large b_T)
- Make sure RG equations, OPE limits and integral relations are satisfied
- RG improvement at the input scale via $\overline{Q_0}(b_T)$ prescription
- Evolution to higher scales

TMD from collinear factorization

MS OPE $\tilde{f}_i^{\text{OPE}}(x, \boldsymbol{b}_{\text{T}}; \boldsymbol{\mu}, \boldsymbol{\zeta} = \boldsymbol{\mu}^2)$ coefficients ∞ 2n $= \sum \sum a_{S}^{n} L_{b}^{k} \widetilde{C}_{ij}^{(n,k)}(x) \otimes f_{j}(x;\mu)$ n = 0 k = 0MS PDF $L_b \equiv \ln\left(\frac{\mu b_T}{2e^{-\gamma_E}}\right)$ QCD running coupling

Map to k_T space

$$L_b^k \mapsto \operatorname{FT}\left\{L_b^k\right\}(k_T) \equiv \mathcal{F}^{(k)}(k_T)$$

$$\mathcal{F}^{(k)}(k_T) \to \overline{\mathcal{F}}^{(k)}(k_T, m) \equiv \mathcal{F}^{(k)}(k_T^2 + m^2)$$

$$\overline{\mathcal{F}}^{(k)} \equiv M_{kn} \Phi^{(n)} = M_{kn} \frac{1}{2\pi} \frac{\ln^n \left(\frac{\mu^2}{k_T^2 + m^2}\right)}{k_T^2 + m^2}$$

Back to b_T space

$$\mathcal{L}^{(n)} \equiv \int \mathrm{d}^2 \mathbf{k}_T e^{i\mathbf{k}_T \cdot \mathbf{b}_T} \Phi^{(n)}$$

$$\mu_b \equiv \frac{2e^{-\gamma_E}}{b_T}$$

Examples:

$$\mathcal{L}^{(0)} = K_0 \left(m b_T \right) \stackrel{m b_T \to 0}{\to} - \ln \left(\frac{m}{\mu_b} \right)$$
$$\mathcal{L}^{(1)} = K_0 \left(m b_T \right) \ln \left(\frac{\mu^2}{m \mu_b} \right) \stackrel{m b_T \to 0}{\to} - \ln \left(\frac{m}{\mu_b} \right) \ln \left(\frac{\mu^2}{m \mu_b} \right)$$

The input HSO TMD pdf

$$f_i^{\text{input}}(x, \boldsymbol{k}_T; \mu, \mu^2) = \sum_{l=1}^{\infty} \left(A_{ij}^{[l]} \otimes f_j \right) M_{lp} \Phi^{(p)} + C f_{i,core}$$
$$\tilde{f}_i^{\text{input}}(x, \boldsymbol{b}_T; \mu, \mu^2) = \sum_{l=1}^{\infty} \left(A_{ij}^{[l]} \otimes f_j \right) M_{lp} \mathcal{L}^{(p)} + C \tilde{f}_{i,core}$$

Fixed power of log $A_{ij}^{[l]}(x, a_S(\mu)) \equiv \sum_{n=0}^{\infty} a_S^n \widetilde{C}_{ij}^{(n,l)}(x)$ C is **not** just a normalization

At small b_T the OPE expansion is recovered

Cutoff Collinear PDF

Choose "core" models (examples)

Pseudo-probability distribution property saved

More on C

Important: C does not depend on the cutoff

 $\Phi_{0,\mu}^{(p)} = \frac{1}{2(1+p)} \ln^{1+p} \left(\frac{\mu^2}{m^2}\right)$

Paper notation (LO)

A more familiar notation

$$f_{\text{inpt,i/p}}(x, \mathbf{k}_{T}; \mu_{Q_{0}}; Q_{0}^{2}) = \frac{1}{2\pi} \frac{1}{k_{T}^{2} + m^{2}} \left[A_{i/p}^{f}(x; \mu_{Q_{0}}) + B_{i/p}^{f}(x; \mu_{Q_{0}}) \ln \frac{Q_{0}^{2}}{k_{T}^{2} + m^{2}} \right] + \frac{1}{2\pi} \frac{1}{k_{T}^{2} + m^{2}} A_{i/p}^{f,g}(x; \mu_{Q_{0}}) + C_{i/p}^{f} f_{\text{core,i/p}}(x, \mathbf{k}_{T}; Q_{0}^{2}) \\ = \underbrace{\left(A_{i/p}^{f} + A_{i/p}^{f,g} \right)}_{M_{10}A^{[1]} \otimes f} \underbrace{\frac{1}{2\pi} \frac{1}{k_{T}^{2} + m^{2}}}_{\Phi^{(0)}} + \underbrace{B_{i/p}^{f}}_{M_{21}A^{[2]} \otimes f} \underbrace{\frac{1}{2\pi} \frac{\ln \left(\frac{Q_{0}^{2}}{k_{T}^{2} + m^{2}} \right)}{\Phi^{(1)}} + C_{i/p}^{f} f_{\text{core,i/p}} \\ \underbrace{\text{Leading Log terms (LL)}}_{\text{at order } a_{s}} \underbrace{\text{Next-to-Leading Log terms (NLL)}}_{\text{at order } a_{s}} \underbrace{\text{at order } a_{s}} \underbrace{32$$

Higher orders

What do we need?

GRIDS of these coefficients are/will be available

The shift of the TMD node seems consistent with what is extracted from fits, i.e.:

The true node is to the right of the "perturbative" one

However, a better investigation is necessary before drawing any rushed conclusions

HSO Collins-Soper Kernel

Such that OPE limit and RG equations are satisfied

RG improvements (LO example) $\overline{Q_0}(b_T, a) = Q_0 \left| 1 - \left(1 - \frac{C_1}{Q_0 b_T} \right) e^{-a^2 b_T^2} \right|$ $\mu_{Q_0} = Q_0 = 5 \; (\text{GeV})$ $_{-1}$ $m_K = 0.2 \; ({ m GeV})$ $\underline{\widetilde{K}}(b_T;\mu_{Q_0}) \equiv \widetilde{K}(b_T;\mu_{\overline{Q_0}}) - \int_{\mu_{\overline{Q_0}}}^{\mu_{Q_0}} \frac{\mathrm{d}\mu'}{\mu'} \gamma_K\left(a_S(\mu')\right)$ $b_{K} = 4.4$ $\widetilde{K}(b_T;\mu)$ —LO inpt – – LO OPE A good approximation even -- LO inpt (RG imp) for $b_T < 1/Q_0$ NO b_{*} and/or b_{max} / b_{min} necessary 10⁻² 10⁻³ 10¹ $b_T \ (\text{GeV})^{-1}$ 37

Input scale RG improvement

Evolution to higher scales

Evolved to 20 GeV with HSO Collins-Soper Kernel

$$\underline{\widetilde{K}}(b_T;\mu) = \widetilde{K}_{\text{input}}\left(b_T;\mu_{\overline{Q_0}}\right) - \int_{\mu_{\overline{Q_0}}}^{\mu} \frac{\mathrm{d}\mu'}{\mu} \gamma_K\left(a_S(\mu')\right)$$

39

Check: the RG equations are satisfied

$$\frac{\partial \ln \tilde{f}_{j/p}\left(x, \boldsymbol{b}_{\mathrm{T}}; \boldsymbol{\mu}, \sqrt{\zeta}\right)}{\partial \ln \sqrt{\zeta}} = \tilde{K}\left(\boldsymbol{b}_{\mathrm{T}}; \boldsymbol{\mu}\right)$$

$$\frac{\mathrm{d}\ln \tilde{f}_{j/p}\left(x, \boldsymbol{b}_{\mathrm{T}}; \boldsymbol{\mu}, \sqrt{\zeta}\right)}{\mathrm{d}\ln \boldsymbol{\mu}} = \gamma\left(\alpha_{S}(\boldsymbol{\mu}); \boldsymbol{\mu}/\sqrt{\zeta}\right) \qquad \checkmark$$

$$\frac{\mathrm{d}\tilde{K}\left(\boldsymbol{b}_{\mathrm{T}};\boldsymbol{\mu}\right)}{\mathrm{d}\ln\boldsymbol{\mu}} = -\gamma_{K}\left(\alpha_{S}(\boldsymbol{\mu})\right)$$

Conventional vs HSO - SIDIS cross section

Conventional

41

Summary

• Consistent TMD parametrization for large TM at input scale

• No need of \mathbf{b}_{\max}

• Improved TM behavior in matching region

NEXT/SOON:

- Check with data (SIDIS, DY, DIA, ...)
- \circ Add higher orders

○ Incorporate NP calculations (lattice, EFT, ...)

Thank you

Backup slides

Asymptotic term

NOTE: Collins-Soper kernel at large b_T

$$\tilde{K}(b_T;\mu) = \tilde{K}_P + \tilde{K}_{NP}$$

$$K(k_T;\mu) = \int \frac{\mathrm{d}^2 \boldsymbol{b}_T}{(2\pi)^2} e^{i\boldsymbol{k}_T \cdot \boldsymbol{b}_T} \tilde{K}(b_T;\mu) = K_P + K_{NP}$$
if
$$\int \frac{\mathrm{d}^2 \boldsymbol{b}_T}{(2\pi)^2} e^{i\boldsymbol{k}_T \cdot \boldsymbol{b}_T} \tilde{K}_{NP} \propto \int \frac{\mathrm{d}^2 \boldsymbol{b}_T}{(2\pi)^2} e^{i\boldsymbol{k}_T \cdot \boldsymbol{b}_T} b_T^{2n} = 0$$

Two possibilities

- The Collins-Soper kernel has a meaning also in k_T space
- Perturbative and nonperturbative b_T/k_T parallel is preserved
- CS kernel and TMDs are physical

- The Collins-Soper kernel is only meaningful in b_T space
- Perturbative and nonperturbative b_T/k_T parallel is **not** preserved
- Only TMDs are physical

Vanishing Soft factor/CS Kernel?

New numbers

$$\begin{split} \overline{\mathcal{L}}_{0}^{(0)} &= 0 \\ \overline{\mathcal{L}}_{0}^{(1)} &= 0 \\ \overline{\mathcal{L}}_{0}^{(2)} &= -\frac{2!}{3}\zeta(3) \\ \overline{\mathcal{L}}_{0}^{(2)} &= -\frac{2!}{3}\zeta(3) \\ \overline{\mathcal{L}}_{0}^{(3)} &= 0 \\ \overline{\mathcal{L}}_{0}^{(3)} &= 0 \\ \overline{\mathcal{L}}_{0}^{(4)} &= -\frac{2}{3}\pi^{2}\zeta(3) - \frac{4!}{5}\zeta(5) \\ \overline{\mathcal{L}}_{0}^{(5)} &= 0 \\ \overline{\mathcal{L}}_{0}^{(6)} &= -\frac{3}{2}\pi^{4}\zeta(3) - 12\pi^{2}\zeta(5) - \frac{6!}{7}\zeta(7) \\ \overline{\mathcal{L}}_{0}^{(7)} &= 0 \\ \overline{\mathcal{L}}_{0}^{(8)} &= -\frac{6!}{9}\pi^{6}\zeta(3) - \frac{252}{5}\pi^{4}\zeta(5) - 480\pi^{2}\zeta(7) - \frac{1}{9}\left(2240\zeta(3)^{3} + 8!\zeta(9)\right) \end{split}$$

Examples: b_T space to k_T space

