

Mu2e-II Calo R&D: BaF2 + Deep UV Photo Trap

Riunione Preventivi Mu2e July 17, 2023

L. Morescalchi

What is different in Mu2e-II?

- Mu2e-II will use the 800 MeV proton beam from the PIP-II Linac:
 - Chopper system can produce an arbitrary pattern of filled or empty **162.5 MHz** (6.25 ns) buckets
 - Mu2e-II will use **10 buckets** each composed of 1.4 x 10[^]8 protons, total 1.4x10[^]9 p in 62.5 ns
 - SMuons/POT ratio for 800 MeV p of 9x10^-5 -> SM/muBunch of 1.2 x10^5 ... 2 times Mu2e
 - Only 3 ms out of every 50 ms are required > Duty Factor of 94% ... 3,5 times Mu2e

- Running **5 years** with PIP-II is possible to reach a **x10 SES** wrt Mu2e:
 - Detectors must increase **bkg rejection** to limit new total expected bkg events below 1 count
 - Radiation hardness requirements from x10 stopped muons and x10 beam flash
 - New instantaneous luminosity poses new requirements on pileup handling and data transmission

INFN Istituto Nazionale di Fisica Nucleare

17/07/23

Occupancy and Pileup Considerations

- The instantaneous luminosity is x 2 the average luminosity in the 2batch mode of Mu2e Run II (characterized by a large variability due to the slow resonant extraction)
 - In principle it can be also more intense, because Mu2e proton pulse was 250 ns and we are using only 65 ns of PIP-II stream.. the limit is the power dissipation in the PS and the pileup level

- The pileup with respect to CE seems to scale linearly with beam intensity, so to keep the same level we have in Mu2e (15%) with 150 ns we need to rescale the new signals length
 - The length for Mu2e-II should be 75 ns (50 ns for 1.5 times Mu2e-II)
 - Pileup resolution in the waveform fit is still under study and can loose this requirement

2

Mu2e

Fast & Rad Hard Crystals?

- BaF 2 is an excellent candidate for a fast, high rate, radiation-hard crystal for the Mu2e-II calorimeter, provided that one has a way of utilizing the 220 nm cross-luminescence fast component without undue interference from the larger 320 nm slow component
 - There are actually two fast components (**τ** = **0.6 ns**) at 195 and 220 nm and two slow components (**τ** = **630 ns**) at 320 and 400 nm
 - Light Yield of the Fast Component is very similar to the LY of the CsI used in Mu2e.. 5% of LYSO

• An ideal filter would be a short pass filter with a sharp edge between 230 nm and 235 nm.

Mu₂e

3

Solar Blind SiPMs - CIT/JPL/FBK R&D

- A possibility is to develop a photosensor that is sensitive only to the fast component
- A Caltech/JPL/FBK collaboration is carrying on an R&D, originally proposed as baseline for Mu2e, to integrate directly an optical filter on a VUV SiPM surface
 - Very expensive R&D that is going on since more than 10 years
- Incorporate a three-layer ALD filter on a 6x6 mm NUV
 SiPM structure, exploring different SiNx passivation layers, guard ring structures, ...

quenching time 150 ns

FBK#611@29.5V 1-inch BaF2 Cosmic Ray

6x6 mm2, 75 μm **11 pe/MeV**

- Fabricated RMD APDs worked well, but were fragile and noisy at room temperature
- Even if results are promising, major concern is radiation hardness and reliability

What kind of SiPM can Survive Mu2e-II?

 With the current technology the only SiPMs that can operate in the Mu2e-II radiation environment (10¹³ neutrons/cm2) without changing the cooling system (-10 C) are the ones with 10/15 μm pixels

• PDE drops due to the high FF.. 30% (15%) at 450 nm, not available the VUV version

17/07/23

Mu2e

5

New BaF2 Readout proposal: Filter + WLS

Our idea is to use a **commercial optical filter** to eliminate the slow component and then a • **WLS** material to shift the 200 nm fast component to the 450 nm where there is the peak of rad hard SiPMs PDE and collect the shifted light with a photon trap

6

Photo Trap Prototype

 This is a prototype of Photo-Trap built @ INFN – Pisa for photons at 350 nm (thanks to Daniel Guberman)

Arrival time distribution for 1 phe events

17/07/23

PMT

SiPM

Photo-Trap

- Photo-Trap induces a degradation of the timing performance which is due to the re-emission time of the WLS and the difference in the optical paths
 - Distributing SiPMs on the sides improves the timing and the light collection

7

Mu₂e

Wavelenght Shifter 200 nm to 450 nm

- Wavelenght shifter materials for these wavelengths have been studied for noble liquid gasses applications: LArgon scintillation light is peaked at 128 nm, while LXenon at 178 nm
- Most common WLS used are **TPB** (TetraPhenyl Butadiene) and **PEN** (PolyEthylene Naphthalate), but at room temperature a slow component starts to arise
- Another solution discovered in the last years are NOL (Nanostructured Organosilicon Luminophore), a wsl material that combine absorber and emitter in the same molecula
- In particular NOL-1 seems to work well at BaF2 wavelengths: it can be deposited as a thin film layer of 200 nm directly on the reflector surface
- We are in contact with Luminotech that can provide same samples to carry on the R&D

Mu2e

Optical Filter to Cut Slow Component

• A commercial wideband interferential filter has been used for the TAPS BaF2 calorimeter upgrade in order to increase the maximum sustainable rate.. 20 ns with a deep uv PMT..

Fair	t of the Teledyne Imaging	g Group				
DUCTS OEM	CONTACT US N	EWS			ABOUT	ACTON OPTICS PRINCETON INSTRUME
oducts: VU	V/UV Widet	and Filters				Send to Colleague E Signap
		Acto	n's standard wideband erials and are used in n	optical filters are mad any research and ind	le from the highest-quality ustrial applications.	y optical
2	ρ	tran cur avai <i>Fee</i> at ii	smittance curves to sho es can be purchased at lable, as are image-qua I free to contact us with ifo@actonoptics.com.	w each filter's perforr the time of manufact lity filters. details of your custon	nance characteristics. Det ure. Other wavelengths ar n or OEM filter requiremen	alled 'rejection'' nd sizes are
Overview	F	eatures	Coating Curves	Rela	ated Products	Request More Information
Wideband VUV/	UV Optical Filters					Pricing Inquiry
Peak Wavelength (nm)	FWHM (nm)	Min. Peak Transmission	0.5" Diameter 2mm Thick	1.0" Diameter 2.5mm Thick	2.0" Diameter 4mm thick	Download the complete catalog Standard filter substrate info
<u>130 +/-10nm</u>	100 +/-25	40%	FW130-W5D	FW130-W-1D	FW130-W-2D	
160 +/-10nm	100 +/-25	45%	FW160-W5D	FW160-W-1D	FW160-W-2D	
200 +/-10nm	60 +/-20	45%	FW200-W5D	FW200-W-1D	FW200-W-2D	
250 +/-10nm	80 +/-20	45%	FW250-W5D	FW250-W-1D	FW250-W-2D	
	100 1/ 25	45%	EW300-W- 5D	EW300-W-1D	FW300-W-2D	

- Transmission efficiency is around 40% at the emission peak
- A fraction of the slow component still pass the filter, but F/S greater than 5
- An ideal filter would be a short pass filter with a sharp edge between 230 nm and 235 nm
 - We are in contact with ASAHI and AHS to understand if it's possible to improve filter performances
 - Prices go around 0.8/1.2 kE for a 3.4x3.4 cm2 sample filter

17/07/23

Mu2e

Requests

- The idea is to start building a prototype of a photo trap and try different combinations of filters and WLS to evaluate the Light Collection and timing
- We also need to develop a PCB to host the SiPMs, the shaper and the amplifieer, integrated with the cooling

		\$\$
BaF2 Crystal	1 crystal, 3.4 x 3.4 x 20 cc @ 10\$/cc	2k
Optical Filter	1 wideband filter + 2 low pass filters (about 1k/each)	4k
WSL and coating	NOL-1 and PEN samples	4k
Mechanics and Cooling	Photo Trap and SiPM cooling + holder	1.5k
SiPMs and PCB	12 x 10 um, 12 x 15 um, PCB + Shaper/Amplifier	2.0k
Readout Electronics	FastADC board and FPGA	1.5k

15k

