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❑ N-on-p Si-sensors: Advantages in extreme radiation environments in 

terms of radiation hardness over the traditional p-on-n sensors include: 

▪ Electron collection instead of holes

▪ Overlapping maxima of weighting and electric fields at the charge-

collecting electrodes

o Drawback: Radiation-induced accumulation of positive net oxide 

charges (Nox) under the Si/SiO2-interface that at high densities can 

compromise the position resolution by creating a conduction 

channel between the electrodes

❑ Radiation-induced surface damage: 

▪ Ionizing radiation: X-rays/γs/charged particles (p, e,…) → 

accumulation of fixed oxide charge (Nf) and interface trap (or 

surface states Nit) densities

▪ Displacement damage: Neutral/charged particles (n, p,…) → 

accumulation of Nit

❑ Neutron radiation environment: Mixed field of neutrons with 

background γs (n/γ)

❑ Previous studies: 

▪ N-on-p sensors with p-stop isolation implant up to ~700 kGy: 

Dose (D) dependence of inter-strip resistance (Rint) for X-rays 

disappears for n/γ+X-ray irradiated [1]

▪ N-on-p without p-stop: Significantly higher Rint for ~3-6 kGy n/γ- 

and ~870 kGy p-irradiated than for 3 kGy X-rays [2] 

→ different introduction rates of Nf and/or Nit at Si/SiO2-interface 

between irradiation types?

❑ Rint -simulations of n-on-p pad-sensors: Higher densities of deep 

Nit,acc/don correlate with higher ρint

▪ ρint of γ-irradiated sensors: Low introduction rates of deep 

Nit,acc/don → high sensitivity to the presence and Nps of p-stop 

▪ ρint of n/γ-irradiated sensors: High introduction rates of deep 

Nit,acc/don →  no sensitivity to the presence of p-stop → superior ρint 

performance to γ-irradiated  for full dose range of about 100 kGy 

→ p-stops not required to maintain high position resolution in 

mixed-field environment

▪ Neutron radiation: Contribution to TID ~negligible → role in Nit 

introduction decisive

❑ Reported saturation of accumulation of Nf and Nit at ~100–200 kGy 

[7,8,9]:  N-on-p sensors without p-stops → potentially feasible 

configuration for future HEP-experiments with radiation environments 

involving hadrons

▪ Similar number of lithography and ion-implantation steps to 

p-on-n: Reduced processing cost of n-on-p sensors

▪ Sensor performance without p-stops: Zero probability of 

discharges or avalanche effects due to excessive electric fields at 

p-stops

n/γs: 

Φ=6.1±0.5e14 

neqcm-2 

TID=7.1±0.6 kGy  

SCSI n-bulk
n-bulk

ΔVdep≈50 V

ΔVdep≈20 V

SCSI n-bulk

n-bulk
ΔVdep≈

150 V

ΔVdep≈

55 V

SCSI n-bulk

p-bulk
ΔVdep≈80 V

ΔVdep≈45 V

TID=

90±11 kGy  

n/γs: 

Φ=2.35

±0.19e15 

neqcm-2 

TID≈23.5

±1.9 kGy  

γs: 

D=23.0±1.2 

kGy

γs: 

D=7.0±0.4 kGy

γs: 

D=90±5 kGy

❑ 𝛾-irradiated MOS in Fig. 1: Substantially shorter depletion region 

(ΔVdep) compared to mixed-field irradiated

▪ Hysteresis between Inv./Acc. CV-sweeps: Only observed in 𝛾-

irradiated MOSs

❑ Measured CV-characteristics reproduced by TCAD in Fig. 1: 

Requires introduction of both donor- and acceptor-type deep Nit at 

Si/SiO2-interface (in addition to Nf) in Table 1

▪ Only 𝑁f at the Si/SiO2-interface in Figs. 1b, c (green dash): 

Abrupt depletion region that does not reproduce the measured MOS 

CV-characteristics

Nit type Ea [eV] σe,h [cm2] Density [cm-2]

Deep donor (Nit,don) EV + 0.65 1e-15 see Fig. 2

Deep acceptor (Nit,acc) EC - 0.60 1e-15 see Fig. 2

❑ Nf: always fully occupied

❑ Unoccupied Nit,don & Nit,acc: Qit = 0

❑ Fully occupied Nit,don: Qit = +𝑒
❑ Fully occupied Nit,acc: Qit = −𝑒

❑ Irradiation campaigns of MOS-capacitors [3]: 

▪ n/γs: RINSC (Rhode Island) and MNRC reactors (UC Davis)

▪ γs(60Co): GIF (Sandia)

❑ n/γ- vs γ-irradiated in Fig. 2: 

▪ Nit, don/acc: Substantially higher introduction rate for n/γ-irradiated 

→ reflected by significantly larger ΔVdep in Fig. 1

Nps=

9e15 cm-3 

3.2 Rint(V, D) with Nf/Nit -parameters as input: 

n/γ- vs γ-irradiated with and without p-stop    

❑ n/γ-irradiated in Fig. 4: High ρint for all TIDs for full V-range

▪ p-stop: Irrelevant for isolation → beneficial impact to ρint from 

high introduction rate of Nit

❑ γ-irradiated in Fig. 4: Low ρint/shorted at D>23 kGy → low 

introduction rate of Nit → no benefit to ρint

▪ p-stop with Nps=9e15 cm-3: Significant benefit to ρint only at 

23 kGy

❑ Mixed-field ρint in Fig. 5: Essentially no TID and p-stop 

dependence → in line with experimental results for p, n/γ, p+n/γ-

irradiated strip-sensors (with p-stop and p-spray) [6]

❑ γ-irradiated ρint in Fig. 5: Substantial dose dependence → difference 

between mixed field and γs in line with measured results for n/γ+X-

rays vs X-rays in strip-sensors with p-stop  [1]

❑ Varied Nps in Fig. 6a: ρint highly sensitive to the level of Nps → 

comparative ρint-evaluations done with γs or X-rays between sensors 

can be convoluted by differences in Nps (e.g. Tracker vs HGCAL 

sensors)

❑ Measured vs TCAD in Fig. 6b: Close agreement with Nf and Nit 

tuned for CV-sweep starting from negative voltages → 𝑎→1 in Eq. 1 

models more accurately conditions at Si/SiO2-interface between 

reverse-biased n+-electrodes after γ- or X-ray irradiation

n/γs: Φ=

9.3±1.1e15 neqcm-2 

(a) 

(d) (c) 

(e) (f) 

(b) 

Figure 1. Measured and TCAD-simulated 𝐶𝑉-characteristics at 𝑇=293 K after 

n/𝛾- or 𝛾-irradiations for a (a) 300-μm-thick initial 𝑛-bulk (Space Charge Sign-

Inverted (SCSI) to 𝑝-bulk) MOS-capacitor, (b) 200-μm-thick 𝑛-bulk MOS, (c) 

120-μm-thick SCSI-𝑝-bulk MOS, (d) 300-μm-thick 𝑝-bulk MOS, (e) 120-μm-

thick SCSI-𝑝-bulk MOS, and (f) 300-μm-thick 𝑛-bulk MOS. Measurements 

included CV-sweeps starting from both inversion (Inv.) and accumulation 

(Acc.) regions [3].

Figure 2: Simulated evolution of Nf and surface-state densities with dose for 

mixed-field and 𝛾-irradiations. For clarity, mean values between densities 

extracted from CV-sweeps starting either from accumulation- or inversion-

regions of the 𝛾-irradiated MOSs in Figs. 1b, 1d & 1f are considered.

Table 1. The simulation input parameters of radiation-induced 𝑁it. 𝐸a,V,C are the 

activation energy, valence band and conduction band energies, respectively, 

while 𝜎e,h are the electron and hole trapping cross sections, respectively [3].

(b) 

(c) 

(a) 

Figure 3: 2D-device 

structures implemented for 

the Rint-simulations. (a) 

Inter-pad region of a DC-

coupled 300-μm-thick n-on-

p pad-sensor with a 

‘common’ p-stop.  

(b) Doping profiles of the n+-implants and p-stop. (c) Inter-strip region of a 

strip-sensor with ‘individual’ p-stops. Doping profiles are identical to Fig. 3b, 

except for p-stop peak doping  Nps=1.5∙1016 cm-3.

MO=Metal-Overhang 

γ: D=7.0±0.4 kGy

n/γ: TID=7.1±0.6 kGy  

γ: D=90±5 kGy

n/γ: TID=90±11 kGy  

γ: D=23.0±1.2 kGy

n/γ: TID=23.5±1.9 kGy  

n/γ: TID=3.5±0.3 kGy

n/γ: TID=64±7 kGy  

Figure 5: Simulated evolution of ρint with dose, extracted from Fig. 4 and from 

a pre-irradiated sensor simulation.

(a) (b) 

Figure 6: (a) Simulated influence of Nps on ρint in a γ-irradiated sensor. (b) 

Comparison of measured and simulated ρint of irradiated HGCAL test-strips. 

The two measured test-strip samples were X-ray irradiated to D=100±10 kGy, 

while the simulation applied the surface-damage parameters for D=90±5 kGy 

from Table 1 and Fig. 2.

TCAD=Technology Computer-Aided Design 

MOS=Metal-Oxide-Semiconductor 

TID=Total Ionizing Dose

❑ Surface-state dynamics [4]:

Figure 4: Simulated evolution of ρint with reverse bias voltage at T=253 K for 

γ- or mixed-field irradiated n-on-p sensors with and without p-stop implants 

(‘w/o PS’). 

Equation 1: Qox = 𝑒Nox

= 𝑒(Nf + 𝑎Nit,don − 𝑏Nit,acc) [3,5] 

   → 𝑎 & 𝑏: fractions of fully occupied Nit,don/acc

❑ Rint-results: Normalized to inter-electrode resistivity (ρint) → 

enables comparison with varied geometry devices

𝜌𝑖𝑛𝑡 = 𝑅𝑖𝑛𝑡
𝐴

𝐿
= 𝑅𝑖𝑛𝑡

𝑤 ∙ 𝑑

𝐿

w=strip length (=width)

d=strip-implant depth

L=gap length between strips

3. Rint-simulations 
3.1 TCAD-modeled devices   

1. Introduction – 
Inter-strip resistance of hadron/mixed-field vs 

X-ray irradiated sensors      

2. Observations on oxide-charge and 

surface-state accumulation with dose: 
Measured and TCAD-simulated MOS CV-

characteristics: n/γ- vs γ-irradiated         

3.3 γs/X-rays: Influence of p-stop doping on Rint 

4. Conclusions 
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