

Surface-state induced inter-electrode isolation of *n*-on-*p* devices in mixed-field and γ -irradiation environments

<u>r. Peltola (1, T. Abdilov (1, N. Akchurin (1, M. Harris (1, Y. Kazhykarim (1, V. Kuryatkov (2</u>

Department of Physics and Astronomy, Advanced Particle Detector Laboratory, Texas Tech University, 1200 Memorial Circle, Lubbock, Texas, U.S.A.

⁽² Nanotech Center, Texas Tech University, 902 Boston Ave, Lubbock, Texas, U.S.A.

1. Introduction –

Inter-strip resistance of hadron/mixed-field vs X-ray irradiated sensors

- □ *N*-on-*p* Si-sensors: Advantages in extreme radiation environments in terms of radiation hardness over the traditional *p*-on-*n* sensors include:
 - Electron collection instead of holes
 - Overlapping maxima of weighting and electric fields at the chargecollecting electrodes
 - Drawback: Radiation-induced accumulation of positive net oxide charges (N_{ox}) under the Si/SiO₂-interface that at high densities can compromise the position resolution by creating a conduction channel between the electrodes
- **Radiation-induced surface damage:**
 - Ionizing radiation: X-rays/ γ s/charged particles (p, e,...) \rightarrow accumulation of fixed oxide charge (N_f) and interface trap (or surface states N_{it}) densities
 - **Displacement damage:** Neutral/charged particles $(n, p,...) \rightarrow$ accumulation of $N_{\rm it}$
- □ Neutron radiation environment: Mixed field of neutrons with background γs (n/ γ)
- **Previous studies:**
 - N-on-p sensors with p-stop isolation implant up to ~700 kGy: Dose (D) dependence of inter-strip resistance (R_{int}) for X-rays disappears for n/γ +X-ray irradiated [1] • *N*-on-*p* without *p*-stop: Significantly higher R_{int} for ~3-6 kGy n/ γ and ~870 kGy p-irradiated than for 3 kGy X-rays [2] \rightarrow different introduction rates of $N_{\rm f}$ and/or $N_{\rm it}$ at Si/SiO₂-interface between irradiation types?
- □ Surface-state dynamics [4]: \square N_f: always fully occupied **Unoccupied** $N_{\text{it,don}} \& N_{\text{it,acc}} : Q_{\text{it}} = 0$ **Fully occupied** $N_{\text{it.don}}$: $Q_{\text{it}} = +e$ **Equation 1:** $Q_{ox} = eN_{ox}$ **Fully occupied** $N_{\text{it.acc}}$: $Q_{\text{it}} = -e$ $= e(N_{\rm f} + \frac{aN_{\rm it,don} - bN_{\rm it,acc}}{8}) [3,5]$ $\rightarrow a \& b$: fractions of fully occupied $N_{\rm it,don/acc}$ \Box n/ γ - vs γ -irradiated in Fig. 2: • $N_{\text{it, don/acc}}$: Substantially higher introduction rate for n/ γ -irradiated \rightarrow reflected by significantly larger ΔV_{dep} in Fig. 1 🗕 n/gammas: Nit,don 20°C 🗕 n/gammas: Nit,acc –n/gammas: Nf - gammas: Nit,don 🗢 gammas: Nit,acc •=- gammas: Nf 2 3.0 2.5 Density 2.0 1.5 1.0 0.5 0.0 100 20 30 50 60 70 80 90 10 Dose [kGy]

Figure 2: Simulated evolution of $N_{\rm f}$ and surface-state densities with dose for mixed-field and γ -irradiations. For clarity, mean values between densities extracted from CV-sweeps starting either from accumulation- or inversionregions of the γ -irradiated MOSs in Figs. 1b, 1d & 1f are considered.

Figure 5: Simulated evolution of ρ_{int} with dose, extracted from Fig. 4 and from a pre-irradiated sensor simulation.

- \Box Mixed-field ρ_{int} in Fig. 5: Essentially no TID and p-stop dependence \rightarrow in line with experimental results for p, n/ γ , p+n/ γ irradiated strip-sensors (with *p*-stop and *p*-spray) [6]
- \Box γ -irradiated ρ_{int} in Fig. 5: Substantial dose dependence \rightarrow difference between mixed field and γs in line with measured results for $n/\gamma + X$ rays vs X-rays in strip-sensors with *p*-stop [1]

3.3 γ s/X-rays: Influence of p-stop doping on R_{int}

2. Observations on oxide-charge and surface-state accumulation with dose: Measured and TCAD-simulated MOS CV-

characteristics: n/γ - vs γ -irradiated

□ Irradiation campaigns of MOS-capacitors [3]:

- **n**/γs: RINSC (Rhode Island) and MNRC reactors (UC Davis)
- γs(⁶⁰Co): GIF (Sandia)

3. R_{int} -simulations 3.1 TCAD-modeled devices

(b) Doping profiles of the n^+ -implants and p-stop. (c) Inter-strip region of a strip-sensor with 'individual' p-stops. Doping profiles are identical to Fig. 3b, except for *p*-stop peak doping $N_{ps}=1.5 \cdot 10^{16} \text{ cm}^{-3}$.

3.2 $R_{int}(V, D)$ with N_f/N_{it} -parameters as input: n/γ - vs γ -irradiated with and without *p*-stop

 \square R_{int} -results: Normalized to inter-electrode resistivity (ρ_{int}) \rightarrow enables comparison with varied geometry devices

$$\rho_{int} = R_{int} \frac{A}{L} = R_{int} \frac{w \cdot d}{L} - \begin{bmatrix} w = \text{strip length (=width)} \\ d = \text{strip-implant depth} \\ L = \text{gap length between strips} \end{bmatrix}$$

Limits for sufficient strip-solation: $\rho_{\text{int.min}}$ (CMS HGCAL) $\approx 0.9 \text{ k}\Omega \cdot \text{cm} \approx \text{preamplifier } Z_{\text{input}} \cdot 100$ $\rho_{\text{int.min}}$ (CMS Tracker) $\approx 2.0 \text{ M}\Omega \cdot \text{cm} \approx R_{\text{bias}} \cdot 100 \text{ [2]}$

.0E+13	gammas: 7kGy Inv	gammas w/o PS: 7kGy Inv	 1.0E+13	gammas: 23	kGy Inv	gammas w/	o PS: 23kGy Inv
.0E+12	gammas: 7kGy Acc	gammas w/o PS: 7kGy Acc	 1.0E+12	gammas: 23	kGy Acc	gammas w/	o PS: 23kGy Acc
0F+11	—n/gammas: 7.1kGy	n/gammas w/o PS: 7.1kGy	1 0F+11	-n/gammas: 2	23.5kGy	n/gammas v	w/o PS: 23.5kGy
0F+10	rho_int,min(Tracker)	rho_int,min(HGCAL)	1.0E+10	rho_int,min(Tracker)	rho_int,min	(HGCAL)
00110			- 1 05 00				

 \Box Varied N_{ps} in Fig. 6a: ρ_{int} highly sensitive to the level of $N_{ps} \rightarrow$ comparative ρ_{int} -evaluations done with γs or X-rays between sensors can be convoluted by differences in N_{ps} (e.g. Tracker vs HGCAL sensors)

Figure 6: (a) Simulated influence of N_{ps} on ρ_{int} in a γ -irradiated sensor. (b) Comparison of measured and simulated ρ_{int} of irradiated HGCAL test-strips. The two measured test-strip samples were X-ray irradiated to $D=100\pm10$ kGy, while the simulation applied the surface-damage parameters for $D=90\pm5$ kGy from Table 1 and Fig. 2.

 \Box Measured vs TCAD in Fig. 6b: Close agreement with $N_{\rm f}$ and $N_{\rm it}$ tuned for CV-sweep starting from negative voltages $\rightarrow a \rightarrow 1$ in Eq. 1 models more accurately conditions at Si/SiO2-interface between reverse-biased n^+ -electrodes after γ - or X-ray irradiation

4. Conclusions

- \square R_{int} -simulations of *n*-on-*p* pad-sensors: Higher densities of deep $N_{\rm it,acc/don}$ correlate with higher $\rho_{\rm int}$
 - ρ_{int} of γ -irradiated sensors: Low introduction rates of deep $N_{\rm it,acc/don} \rightarrow \rm high\ sensitivity\ to\ the\ presence\ and\ N_{\rm ps}\ of\ p-stop$
 - ρ_{int} of n/ γ -irradiated sensors: High introduction rates of deep $N_{\rm it,acc/don} \rightarrow$ no sensitivity to the presence of p-stop \rightarrow superior $\rho_{\rm int}$ performance to γ -irradiated for full dose range of about 100 kGy \rightarrow p-stops not required to maintain high position resolution in mixed-field environment
 - Neutron radiation: Contribution to TID ~negligible \rightarrow role in N_{it} introduction decisive

 n/γ - or γ -irradiations for a (a) 300-µm-thick initial *n*-bulk (Space Charge Sign-Inverted (SCSI) to p-bulk) MOS-capacitor, (b) 200-µm-thick n-bulk MOS, (c) 120-µm-thick SCSI-p-bulk MOS, (d) 300-µm-thick p-bulk MOS, (e) 120-µmthick SCSI-p-bulk MOS, and (f) 300-µm-thick n-bulk MOS. Measurements included CV-sweeps starting from both inversion (Inv.) and accumulation (Acc.) regions [3].

 \Box γ -irradiated MOS in Fig. 1: Substantially shorter depletion region (ΔV_{dep}) compared to mixed-field irradiated

Hysteresis between Inv./Acc. CV-sweeps: Only observed in γ irradiated MOSs

□ Measured CV-characteristics reproduced by TCAD in Fig. 1: Requires introduction of both donor- and acceptor-type deep N_{it} at Si/SiO_2 -interface (in addition to N_f) in Table 1

• Only N_f at the Si/SiO₂-interface in Figs. 1b, c (green dash): Abrupt depletion region that does not reproduce the measured MOS *CV*-characteristics

Table 1. The simulation input parameters of radiation-induced N_{it} . $E_{a,V,C}$ are the activation energy, valence band and conduction band energies, respectively, while $\sigma_{e,h}$ are the electron and hole trapping cross sections, respectively [3].

N _{it} type	$E_{\rm a}[{\rm eV}]$	$\sigma_{\rm e,h} [{\rm cm}^2]$	Density [cm ⁻²]
Deep donor $(N_{it,don})$	$E_{V} + 0.65$	1e-15	see Fig. 2
Deep acceptor $(N_{it,acc})$	<i>E_C</i> - 0.60	1e-15	see Fig. 2

TCAD=Technology Computer-Aided Design MOS=Metal-Oxide-Semiconductor TID=Total Ionizing Dose

Figure 4: Simulated evolution of ρ_{int} with reverse bias voltage at T=253 K for γ - or mixed-field irradiated *n*-on-*p* sensors with and without *p*-stop implants ('w/o PS').

\square n/ γ -irradiated in Fig. 4: High ρ_{int} for all TIDs for full V-range

- *p*-stop: Irrelevant for isolation \rightarrow beneficial impact to ρ_{int} from high introduction rate of $N_{\rm it}$
- \Box γ -irradiated in Fig. 4: Low ρ_{int} /shorted at D>23 kGy \rightarrow low introduction rate of $N_{\rm it} \rightarrow$ no benefit to $\rho_{\rm int}$
 - *p*-stop with $N_{\rm ps}$ =9e15 cm⁻³: Significant benefit to $\rho_{\rm int}$ only at 23 kGy

Reported saturation of accumulation of N_f and N_{it} at ~100–200 kGy [7,8,9]: N-on-p sensors without p-stops \rightarrow potentially feasible configuration for future HEP-experiments with radiation environments involving hadrons

- Similar number of lithography and ion-implantation steps to *p*-on-*n*: Reduced processing cost of *n*-on-*p* sensors
- Sensor performance without *p*-stops: Zero probability of discharges or avalanche effects due to excessive electric fields at *p*-stops

References

[1] V. Mariani, et al., NIM A 980 (2020) 164423. [2] J.-O. Müller-Gosewisch, et al., 2021 JINST 16 P07004. [3] N. Akchurin et al 2023 JINST 18 P08001. [4] E.H. Nicollian and J.R. Brews, John Wiley & Sons (1982). [5] Poehlsen et al., NIM A 700 (2013) 22-39. [6] W. Adam, et al., JINST 12 (2017) P06018. [7] J. Zhang, Ph.D. thesis, University of Hamburg, DESY-2013-00115 (2013). [8] F. Moscatelli et al., IEEE Trans. Nucl. Sci. 64 (8) (2017) 2259-2267. [9] F. Moscatelli, et al., JINST 12 (2017) P12010.