

Silicon Carbide devices for radiation detection: a review of the main performance

S. Tudisco

INFN - Laboratori Nazionali del Sud

Frontier Detectors for Frontier Physics La Biodola • Isola d'Elba • Italy 26 May - 1 June, 202

Silicon Carbide devices for radiation detection: a review of the main performances

Outline

- ✓ Why Silicon Carbide for radiation detection
- ✓ INFN-SiCILIA, R&D on SiC detectors
- SiC Epitaxial growth
- ✓ SiC processing
- ✓ Performance overview
- ✓ SiCILIA Users
- ✓ Perspectives for new devices

Why Silicon Carbide for radiation detection

Property	Si	Diamond	Diamond	4H SiC
Material	MCz, FZ, epi	Polycrystal	single crystal	epitaxial
E _g [eV]	1.12	5.5	5.5	3.3
E _{breakdown} [V/cm]	3.105	10 ⁷	10 ⁷	2.2.10
μ _e [cm ² /Vs]	1450	1800	>1800	800
$\mu_h [cm^2/Vs]$	450	1200	>1200	115
v _{sat} [cm/s]	0.8·10 ⁷	2.2·10 ⁷	2.2·10 ⁷	2·10 ⁷
Z	14	6	6	14/6
٤ _r	11.9	5.7	5.7	9.7
e-h energy [eV]	3.6	13	13	7.6
Density [g/cm3]	2.33	3.515	3.515	3.22
Displacem. [eV]	13-20	43	43	25
e-h/µm for mips	~80	36	36	55

Applications

- UV Soft-X detection
- Charged Particle detection and <u>identification</u>
- Neutron detection

- Wide band-gap (3.3eV)
 ⇒ <u>Visible blind</u>
- \Rightarrow Low Leakage current
- High Breakdown
- ⇒ Advantage for Radiations hardness
- →• Different e-h mobility
 - ⇒ Charge Identification pulse shape analysis
 - Fast devices
 - \Rightarrow Timing applications
 - Higher displacement threshold
 - ⇒ Radiation hardness more than Silicon
- Signal
- ⇒ Less charge than Si, SiC≈Si/2
- \Rightarrow A problem for MIP!
- \Rightarrow No problem in all other case

Rad Hard devices !

INFN R&D on SiC detectors

INFN

2017 - INFN call CSN5 - SiCILIA

Silicon Carbide Detectors for Intense Luminosity Investigations and Applications

New Radiation Hard detectors besed on SIC tecnology

institutions and Companies

CNR-IMM – Catania CNR-INO – Pisa PSI – Switzerland ENEA- Frascati Fondazione Bruno Kessler (**FBK**) – Trento ST Microelectronics – Catania LPE – Catania (**LPE**)

SiCILIA Aims

Epitaxial growth SiC beyond the state of the art (\sim 30 µm)

Processing → Schottky => p-n junctions

SiCILIA results: Epitaxial growths

SiCILIA results: Processing

Performance overview: Energy Resolution

Performance overview: SiC-Timing

SiC

- Beam ⁵⁸Ni @ 60MeV, 70MeV
- Digitazer CAEN DT5751
- START: **µCP**, STOP: Si Hamamatsu o SiC STM

New beam test are in preparation

S. Tudisco - 16th Pisa Meeting

C. Ciampi et al. NIMA 925 (2019) 60-69

Performance overview : particles identification

S. Tudisco - 16th Pisa Meeting

C. Ciampi et al. NIMA 925 (2019) 60-69 10

Performance overview : X-Ray detection

Beam Position Monitor (XBPM) **1,2,3,4,5** Transparency Extreme radiation hardness Fast response

position (mm)

SiC 100 µm

Pad A Pad B Radiation hardness

Synchrotrons radiation

X-ray beam 10x10 µm², 5E10 ph/sec @ 12.4keV

Radiation Hardness

G. Petringa *et al* 2020 *JINST* **15** C05023

Performance overview: Radiation Hardness

Energy spectra

Charge Collection Efficiency

Performance overview : Radiation Hardness

LINAC @ UniMe Electrons irradiation - Energy 5 MeV

- Current 1-200 mA
- Rep. Rate 1-300 Hz
- Pulse duration 3 µsec

SiCILIA Users: NUMEM @ INFN-LNS

MAGNEX – Magnetic spectrometer

NUclear Matrix Elements of Neutrinoless Double Beta Decays by Heavy Ion Double Charge Exchange Reactions

□ Small nuclear cross-sections

□ High intensity ions beams

MEN

E

22.5

SiCILIA Users: FRAISE @ INFN-LNS

Most of the produced beams will be «cocktail» and need event by event identification through the measurement of time of flight and energy loss

One of the studied configuration foresees the use an array of pads of 5 mmx 5mm able to cover a surface up to 6 cmx 5cm

Will provide fragmetation beams with very high intensity (up to 10^7 p/s for ions like 16 C)

50

SiCILIA Users: CATANA @ INFN-LNS

Perspectives for new devices

G. Cardella et al NIMA 378 (1996) 262 S. Tudisco et al NIMA 426 (1999) 436 F. Amorini et al NIMA 550 (2005) 248

PNRR - SAMOTHRACE R&D on Medical devices

SiciliAn MicrOnanoTecH Research And Innovation CEnter

Silicon Carbide devices for radiation detection

Thanks for your attention !