

Quantum sensing in axion dark matter search

Caterina Braggio University of Padova and INFN

G. Ruoso, R. Di Vora, C. Braggio, G. Carugno, A. Ortolan E. Berto, F. Calaon, M. Tessaro (our skilled technicians)

P. Bertet, E. Flurin L. Balembois, Z. Wang, J. Travesedo, L. Pallegoix

Quantronics Group

Research Group in Quantum Electronics, CEA-Saclay, France

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

About QUANTUM SENSING: not just plain detection of quanta

"Quantum sensors are individual systems or ensembles of systems that use **quantum coherence**, **interference** and **entanglement** to determine physical quantities of interest." *Rev. Mod. Phys.* 89, 035002 (2017)

"A device whose measurement (sensing) capability is enabled by our ability to **manipulate and readout its quantum states**." *M. Safranova and D. Budker*

v	aeV	feV	peV	neV	μeV	meV	
10 ²⁷ 10 ²⁶	⁵ 10 ²⁵ 10 ²⁴ 10 ²³	10 ²² 10 ²¹ 10 ²	⁰ 10 ¹⁹ 10 ¹⁸	10 ¹⁷ 10 ¹⁶ 10 ¹⁹	5 10 ¹⁴ 10 ¹³ 10 ¹²	PQ Scale [G 10 ¹¹ 10 ¹⁰ 10 ⁹ 1	eV] 0 ⁸ 10
µHz	mHz	Hz	kHz	MH	Free GHz	quency = m, THz	/2π
l0 ⁴ yr co	entury yr	week	hr r	nin s	Coherence t	ime $\sim_{\substack{\mu s\\1}} (mv^2$	$()^{-1}$
pc	mpc	AU	R _☉	C R _⊕ 100 km	oherence le	$mgth \sim (m\tau)$	$n^{(-1)}$
Axion-p	hoton	Birefringe	ent cavity	7	Cavities	Dsh/refle	ctor
	Earth			Lumped elem	ent	Dielectric hale	oscop
CMB			SR	SRF upconversion Plasma			

- below 1 eV, we look for a persistent, oscillating field with frequency set by the particle mass ⇐⇒ wave-like DM
- resonant cavities (µeV .1 meV): this is most sensitive method, we can probe QCD axions, not just ALPs
- open problem: this is an endless, time-consuming search due to the **poor S/N ratio**, with N set by QM when linear amplifiers are employed
- quantum sensors can speed up the search significantly

- **1. 3D** microwave **resonator** for resonant amplification -think of an HO driven by an external force-
- 2. with tunable frequency to match the axion mass $(\delta \nu_c \sim MHz, target 100 MHz range at KSVZ)$
- 3. the resonator is within the bore of a SC magnet $\rightarrow B_0$ multi-tesla field
- 4. it is readout with a **low noise receiver** delfridge operation at mK temperatures

OPEN CHALLENGES for advanced detectors

 $P_a \propto B^2 V_{\rm eff} Q_L$ signal power in W (~ 10⁻²²)

$$rac{df}{dt} \propto rac{g_{4\gamma\gamma}^4 B^4 V_{
m eff}^2 Q_L}{T_{
m sys}^2} \propto f^{-4} \qquad {
m scan \ rate}$$

- $\odot~$ target: QCD axions in the **yellow band**
- to go from KSVZ to DFSZ is a long journey $(df/dt)_{DFSZ} \sim 50 (df/dt)_{KSVZ}$
- ⊙ the "sweet spot"
- heavier axions are better motivated, BUT
 (i) the *scan rate df/dt scales unfavorably with f*(ii) quantum noise in linear amplifiers linearly increases with *f*
- → hundreds of years are projected to probe the 1-10 GHz decade with current technology (i.e. cavities, magnets and SC amplifiers)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへ⊙

v	aeV	feV	peV	neV	μeV	meV	e
10 ²⁷ 10 ²⁶	⁶ 10 ²⁵ 10 ²⁴ 10 ²³	10 ²² 10 ²¹ 10 ²	⁰ 10 ¹⁹ 10 ¹⁸ 1	0 ¹⁷ 10 ¹⁶ 10 ¹⁵ 1	P 0 ¹⁴ 10 ¹³ 10 ¹² 1	Q Scale [G	eV] 0 ⁸ 10 ⁷
µHz	mHz	Hz	kHz	MHz	Freq GHz	uency = m/THz	2π
l0 ⁴ yr o	entury yr	week	hr mir		oherence ti	$\mathbf{me} \sim (mv^2)$	$)^{-1}$
pc	mpc	AU		Co ⊕ 100 km	herence ler	$m_{m} \sim (mv_{m})$	$)^{-1}$
Axion-p	hoton	Birefringe	ent cavity	(Cavities	Dsh/reflee	ctor
	Earth		L	umped elemen	t	Dielectric halo	scope
CMB			SRF	SRF upconversion Plasma			

- \circ below 1 eV \iff wave-like DM
- resonant cavities (μ eV .1 meV): this is most sensitive method, we can probe QCD axions, not just ALPs
- open problem: this is an endless, time-consuming search due to the **poor S/N ratio**, with N set by QM when linear amplifiers are employed
- quantum sensors can **speed up the search** significantly

$df/dt \propto V_{\rm eff}^2 Q_L T_{sys}^{-2}$

Even though the experiment is **cooled to the lowest temperatures in the Universe** (~ 10 mK), and Josephson Parametric Amplifiers (JPA) are employed to **minimize added noise**, they introduce fundamental noise (**SQL**, **Standard Quantum Limit noise**)

 $T_{sys} = T_c + T_A$ T_c cavity physical temperature T_A effective noise temperature of the amplifier

$$k_B T_{sys} = h\nu \left(\frac{1}{e^{h\nu/k_B T_c} - 1} + \frac{1}{2} + N_A\right)$$

 $N_A\gtrsim 0.5$ S. K. Lamoreaux *et al.*, Phys Rev D **88** 035020 (2013)

SIGNAL READOUT

 $df/dt \propto V_{\rm eff}^2 Q_L T_{sys}^{-2}$

weak interactions with SM particles $\implies 10^{-23}$ W signal power

Josephson Parametric Amplifiers (JPAs) introduce the lowest level of noise, set by the laws of quantum mechanics (Standard Quantum Limit noise)

 $T_{sys} = T_c + T_A$ T_c cavity physical temperature T_A effective noise temperature of the amplifier

$$k_B T_{sys} = h\nu \left(\frac{1}{e^{h\nu/k_B T_c} - 1} + \frac{1}{2} + N_A\right)$$

 $N_A\gtrsim 0.5$ S. K. Lamoreaux *et al.*, Phys Rev D **88** 035020 (2013)

linear amplification vs photon counting

LINEAR AMPLIFIER READOUT

Alternatively, with $[X_1, X_2] = \frac{i}{2}$ the hamiltonian of the HO is written as:

$$\mathcal{H} = \frac{h\nu_c}{2}(X_1^2 + X_2^2)$$

PHOTON COUNTER: measuring N

 $a, a^* \rightarrow$ to operators a, a^{\dagger} with $[a, a^{\dagger}] = 1$ and $N = aa^{\dagger}$ Hamiltonian of the cavity mode is that of the HO:

$$\mathcal{H} = h \nu_c \left(N + \frac{1}{2} \right)$$

Unlimited (exponential) gain in the haloscope scan rate *R* compared to linear amplification at SQL: $R_{\text{counter}} = Q_L \frac{h\nu}{kT}$

$$\frac{R_{\rm counter}}{R_{\rm SQL}} \approx \frac{Q_L}{Q_a} e^{\frac{R_B}{R_B}}$$

Ex. at 7 GHz, 40 mK

 \implies 10³ faster than SQL linear amplifier readout with an ideal SMPD (dark count free, unitary efficiency)

S. K. Lamoreaux et al., Phys Rev D 88 035020 (2013)

beyond the SQL with a "microwave phototube" \iff detection of quantum microwaves

	B [T]	P_sig [yW(ph/s)]	$P_{ m sig}^{ m DFSZ}\left[m yW(ph/s) ight]$
$\nu_c = 7.37 \mathrm{GHz}$	2	0.84(0.17)	0.11(0.026)
	12	30.4(6.2)	6.3(0.86)
$\nu_c = 10 \mathrm{GHz}$	12	22.39(3.38)	3.11(0.47)

signal power and photon rate for benchmark QCD axion models in yoctowatt ($yW = 10^{-24} W$)

Using quantum-limited **linear amplifiers** (Josephson parametric amplifiers) the **noise set by quantum mechanics** exceeds the **signal** in the high frequency range, whereas **photon counting** has no intrinsic limitations

SMPDs in the microwave range

Detection of individual microwave photons is a challenging task because of their **low energy** e.g. $h\nu = 2.1 \times 10^{-5}$ eV for $\nu = 5$ GHz

Requirements for dark matter search:

- detection of *itinerant photons* due to involved intense **B** fields
- $\circ~$ lowest dark count rate $\Gamma < 100\,\text{Hz}$
- $\circ \gtrsim 40-50$ % efficiency
- \circ large "dynamic" bandwidth \sim cavity tunability

DETECTION OF QUANTUM MICROWAVES

The detection of individual **microwave photons** has been pioneered by **atomic cavity quantum electrodynamics experiments** and later on transposed to **circuit QED experiments**

Nature 445, 515-518 (2007)

In both cases two-level atoms interact directly with a microwave field mode* in the cavity

・ロト・(型ト・(ヨト・(型ト・(ロト))

Cavity-QED for photon counting

Can the field of a single photon have a large effect on the atom (TLS)?

Interaction: $H = -\vec{d} \cdot \vec{E}$, $E(t) = E_0 \cos \omega_q t$

It's a matter of increasing the **coupling strength** *g* between the atom and the field $g = \vec{E} \cdot \vec{d}$:

- \rightarrow work with **large atoms**
- \rightarrow confine the field in a cavity

$$\vec{E} \propto \frac{1}{\sqrt{V}}, V$$
 volume

 κ rate of cavity photon decay γ rate at which the qubit loses its excitation to modes \neq from the mode of interest

 $g \gg \kappa, \gamma \iff$ regime of strong coupling coherent exchange of a field quantum between the atom (matter) and the cavity (field)

CAVITY QED SYSTEM

A simple theoretical model (Jaynes-Cummings) describes atoms as two-level, **spin-like systems** interacting with a quantum oscillator

$$H = \hbar\omega_{\rm r} \left(a^{\dagger}a + \frac{1}{2} \right) + \frac{\hbar\Omega}{2} \sigma^z + \hbar g (a^{\dagger}\sigma^- + a\sigma^+)$$

- $-\omega_r$ cavity resonance frequency
- Ω atomic transition frequency
- g strength of the atom-photon coupling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Jaynes-Cummings model

Interaction of a two state system with quantized radiation in a cavity

$$\mathcal{H}_{\rm JC} = \frac{1}{2}\hbar\omega_q\hat{\sigma}_z + \hbar\omega_r\hat{a}^{\dagger}\hat{a} + \hbar g(\hat{a}\hat{\sigma}_+ + \hat{a}^{\dagger}\hat{\sigma}_-)$$

$$\begin{aligned} \Delta &= |\omega_r - \omega_q| \\ \Gamma &= \min\{\gamma, \ \kappa, \ 1/T\} \\ &- \ \omega_r \sim \omega_q \quad resonance \ \text{case} \end{aligned}$$

-
$$\Delta = |\omega_r - \omega_q| \gg g$$
 dispersive limit case

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dispersive regime of detuning $g/\Delta \ll 1$

$$\hat{H}_{\rm JC}^{\rm eff} = \hbar\omega_r \hat{a}^{\dagger} \hat{a} + \frac{\hbar\omega_q'}{2} \hat{\sigma}_z + \frac{\hbar\chi \hat{a}^{\dagger} \hat{a} \hat{\sigma}_z}{2}$$
$$= (\hbar\omega_r + \frac{\hbar\chi \hat{\sigma}_z}{2}) \hat{a}^{\dagger} \hat{a} + \frac{\hbar\omega_q'}{2} \hat{\sigma}_z$$
$$= \hbar\omega_r \hat{a}^{\dagger} \hat{a} + \frac{\hbar}{2} (\omega_q' + \underbrace{\Im\chi \hat{a}^{\dagger} \hat{a}}_{2\chi}) \hat{\sigma}_z$$

$$\chi = \frac{g^2}{\Delta}$$

 $\rightarrow \hbar \chi \hat{\sigma_z}$ dispersive qubit state readout

$$\rightarrow 2\chi a^{\dagger}a$$
 number splitting

- → **qubit frequency** is a function of the **cavity photon number**
- \rightarrow measuring the **qubit frequency** is equivalent to measuring the **number of photons** in the cavity

from cavity-QED to circuit-QED

In circuit QED the atom-photon interaction is implemented using **artificial atoms**, capacitively coupled to **transmission line resonators**.

g is significantly increased compared to Rydberg atoms:

- \rightarrow artificial atoms are large (~ 300 μ m) \implies large dipole moment
- $\begin{array}{l} \rightarrow \quad \vec{E} \text{ can be tightly confined} \\ \vec{E} \propto \sqrt{1/\lambda^3} \\ \omega^2 \lambda \approx 10^{-6} \text{ cm}^3 \text{ (1D) versus } \lambda^3 \approx 1 \text{ cm}^3 \text{ (3D)} \\ \implies 10^6 \text{ larger energy density} \end{array}$

(a) $(g/2\pi)_{cavity} \sim 50 \text{ kHz}$ (b) $(g/2\pi)_{circuit} \sim 100 \text{ MHz}$ (typical) 10^4 larger coupling than in atomic systems

coupling qubits with 3D cavities

 \rightarrow *itinerant* and *cavity* single microwave photon counter (SMPD)

CAVITY PHOTONS

Phys. Rev. Lett. 126, 141302 (2021)

Nature 600, 434–438 (2021) ← spin fluorescence detection Nature 619, 276–281 (2023) ← single spin flip

- 4WM process: the incoming photon is converted into an excitation of the qubit
- \odot readout of the qubit state with QIS methods
- \odot efficiency $\eta \sim 0.5$, dark counts $\Gamma_d \sim 90 \, {
 m s}^{-1}$
- \odot on/off resonance \rightarrow monitor the dark counts, which set the background in these experiment

SMPD-HALOSCOPE prototype

- hybrid (normal-superconducting) cavity 7.37 GHz, tunable, $Q_0 = 9 \times 10^5$
- T=14 mK delfridge base temperature
 @ Quantronics lab (CEA, Saclay)

 \odot 2 T-field

- triplet of rods controlled by a nanopositioner mounted at the MC stage to probe for different axion masses
- passive protection by the B-field for SMPD and TWPA

SMPD (top) and cavity

SC magnet

a four wave mixing process

an atom coupled to a single mode is not good for single photon detection, as you want the conversion process to be optimized ($\eta \simeq 1$) \Longrightarrow 4WM is implemented on the SC circuit

 $\omega_b + \omega_p = \omega_q + \omega_w$

Qubit	
$\omega_q/2\pi$	$6.222~\mathrm{GHz}$
T_1	$17-20~\mu s$
T_2^*	$28 \ \mu s$
$\chi_{qq}/2\pi$	$240 \mathrm{~MHz}$
$\chi_{qb}/2\pi$	$3.4 \mathrm{~MHz}$
$\chi_{qw}/2\pi$	$15 \mathrm{~MHz}$
Waste mode	
$\omega_w/2\pi$	$7.9925~\mathrm{GHz}$
$\kappa_{\rm ext}/2\pi$	$1.0 \; \mathrm{MHz}$
$\kappa_{\rm int}/2\pi$	$< 100 \; \rm kHz$
Buffer mode	
$\omega_b/2\pi$	$7.3693~\mathrm{GHz}$
$\kappa_{\rm ext}/2\pi$	$0.48 \; \mathrm{MHz}$
$\kappa_{\rm int}/2\pi$	40 kHz

readout protocol: the SMPD is operated through nested cycles

- \rightarrow basic block (d) is detection + qubit readout (non deterministic)
- \rightarrow measure SMPD efficiency and cavity parameters
- \rightarrow control the nanopositioner for cavity frequency tuning
- → monitor dark counts under different conditions: at resonance $\omega_b = \omega_c$ and at 4 sidebands $\omega_b = \omega_c \pm 1 \text{ MHz}$, $\omega_b = \omega_c \pm 2 \text{ MHz}$

A background-limited search: dark counts

- ⊙ counts at $ω_b = ω_c$ registered in a time interval of 28.6 s (set by readout protocol structure) ⇔ average ~ 90 Hz dark count rate
- ⊙ both the counts at resonance and on sidebands $\omega_b = \omega_c \pm 1, 2 \text{ MHz}$ vary **beyond statistical uncertainty** expected for poissonian counts
- \odot notice a **correlation** between the two channels
- $\odot~$ and a systematic excess at cavity frequency \rightarrow the cavity sits at a higher T

https://arxiv.org/abs/2403.02321

A background-limited search: dark counts

We compute the Allan variance to assess the long term stability of the detector

- → click number fluctuations decrease as $1/\tau$, up to a maximum observation time τ_m of about 10 min
- \rightarrow for $\tau > \tau_m$ the Allan variance increases \rightarrow random walk
- $\begin{array}{l} \rightarrow & \mbox{the differential channel follows the $1/\tau$} \\ & \mbox{trend up to a longer time interval} \\ & \mbox{$\tau \sim 30\,{\rm min} \rightarrow {\rm small correlation}$} \end{array}$
- \rightarrow no additional noise in the data recorded between successive step motion intervals compared to unperturbed cavity

beyond SMPD diagnostics: UPDATING THE EXCLUSION PLOT FOR $g_{a\gamma\gamma}$

- \rightarrow data analysed in 420 kHz $\simeq 14 \Delta \nu_c$ range
- $\rightarrow~$ reached the extended QCD axion band with a short integration time (10 min), in spite of the small B-field
- \odot or **x20 gain [conservative]** in scan speed vs linear amplifiers

https://arxiv.org/abs/2403.02321

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへ⊙

- ▶ what next: scaling up to observatory ⇒ increase the B field, and probe for axions in a much broader range
- ► this is particle physics with lab-scale, tabletop experiments → new windows at energy scales not accessible to collider experiments https://www.science.org/doi/10.1126/science.aal3003 https://arxiv.org/pdf/2311.01930
- in line with the approach outlined in the DRD5 proposal (see the document prepared by the TSF5 co-conveners, guided by M. Doser and M. De Marteau)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへ⊙