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About QUANTUM SENSING: not just plain detection of quanta

“Quantum sensors are individual systems or ensembles of systems that use
quantum coherence, interference and entanglement to determine physical
quantities of interest.”
Rev. Mod. Phys. 89, 035002 (2017)

“A device whose measurement (sensing) capability is enabled by our ability to
manipulate and readout its quantum states.”
M. Safranova and D. Budker

measurementrandom interaction with fieldinitialised
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its operational degrees of freedom are intrinsically quantum mechanical



◦ below 1 eV, we look for a persistent, oscillating field
with frequency set by the particle mass ⇐⇒ wave-like DM

◦ resonant cavities (µeV - .1 meV): this is most sensitive method, we can probe QCD axions, not just ALPs

◦ open problem: this is an endless, time-consuming search due to the poor S/N ratio, with N set by QM
when linear amplifiers are employed

◦ quantum sensors can speed up the search significantly



1. 3D microwave resonator for resonant amplification
-think of an HO driven by an external force-

2. with tunable frequency to match the axion mass
(δνc ∼ MHz, target 100 MHz range at KSVZ)

3. the resonator is within the bore of a SC magnet → B0
multi-tesla field

4. it is readout with a low noise receiver
delfridge operation at mK temperatures



OPEN CHALLENGES for advanced detectors
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ρ0 = 0.45 GeV cm−3

Pa ∝ B2VeffQL signal power in W (∼ 10−22)

df
dt

∝
g4

aγγB4 V2
eff QL

T2
sys

∝ f−4 scan rate

⊙ target: QCD axions in the yellow band

⊙ to go from KSVZ to DFSZ is a long journey
(df/dt)DFSZ ∼ 50 (df/dt)KSVZ

⊙ the “sweet spot”

⊙ heavier axions are better motivated,
BUT
(i) the scan rate df/dt scales unfavorably with f
(ii) quantum noise in linear amplifiers linearly
increases with f

→ hundreds of years are projected to probe the
1-10 GHz decade with current technology
(i.e. cavities, magnets and SC amplifiers)



◦ below 1 eV ⇐⇒ wave-like DM

◦ resonant cavities (µeV - .1 meV): this is most sensitive method, we can probe QCD axions, not just ALPs

◦ open problem: this is an endless, time-consuming search due to the poor S/N ratio, with N set by QM
when linear amplifiers are employed

◦ quantum sensors can speed up the search significantly



SIGNAL READOUT df/dt ∝ V2
eff QL T−2

sys

Even though the experiment is cooled to the lowest temperatures in the Universe (∼ 10 mK), and Josephson
Parametric Amplifiers (JPA) are employed to minimize added noise, they introduce fundamental noise
(SQL, Standard Quantum Limit noise)

Tsys = Tc + TA
Tc cavity physical temperature
TA effective noise temperature of the amplifier

kBTsys = hν
(

1
ehν/kBTc − 1

+
1
2
+ NA

)
NA ≳ 0.5
S. K. Lamoreaux et al., Phys Rev D 88 035020 (2013)

ADMX: Axion Dark Matter eXperiment

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.035020


SIGNAL READOUT df/dt ∝ V2
eff QL T−2

sys

weak interactions with SM particles =⇒ 10−23 W signal power
Josephson Parametric Amplifiers (JPAs) introduce the lowest level of noise, set by the laws of quantum
mechanics (Standard Quantum Limit noise)

Tsys = Tc + TA
Tc cavity physical temperature
TA effective noise temperature of the amplifier

kBTsys = hν
(

1
ehν/kBTc − 1

+
1
2
+ NA

)
NA ≳ 0.5
S. K. Lamoreaux et al., Phys Rev D 88 035020 (2013)

at 10 GHz frequency, where TSQL = hν/kB → 0.5 K

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.035020


linear amplification vs photon counting

LINEAR AMPLIFIER READOUT

Alternatively, with [X1,X2] =
i
2

the hamiltonian of the HO is written as:

H =
hνc

2
(X2

1 + X2
2)

PHOTON COUNTER: measuring N

a, a∗ → to operators a, a† with [a, a†] = 1 and N = aa†
Hamiltonian of the cavity mode is that of the HO:

H = hνc

(
N +

1
2

)

Unlimited (exponential) gain in the haloscope scan rate R compared to linear
amplification at SQL: Rcounter

RSQL
≈ QL

Qa
e

hν
kBT

Ex. at 7 GHz, 40 mK
=⇒ 103 faster than SQL linear amplifier readout with an ideal SMPD (dark count free, unitary efficiency)

S. K. Lamoreaux et al., Phys Rev D 88 035020 (2013)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.035020


beyond the SQL with a “microwave phototube” ⇐⇒ detection of quantum microwaves

B [T] PKSVZ
sig [yW(ph/s)] PDFSZ

sig [yW(ph/s)]
νc = 7.37 GHz 2 0.84(0.17) 0.11(0.026)

12 30.4(6.2) 6.3(0.86)
νc = 10 GHz 12 22.39(3.38) 3.11(0.47)

signal power and photon rate for benchmark QCD axion models in yoctowatt (yW= 10−24 W)

Using quantum-limited linear amplifiers (Josephson parametric amplifiers) the noise set by quantum
mechanics exceeds the signal in the high frequency range, whereas photon counting has no intrinsic limitations



SMPDS in the microwave range

Detection of individual microwave photons is a challenging task because of their low energy
e.g. hν = 2.1 × 10−5 eV for ν = 5 GHz

Requirements for dark matter search:

◦ detection of itinerant photons due to involved intense B fields

◦ lowest dark count rate Γ < 100 Hz

◦ ≳ 40 − 50 % efficiency

◦ large “dynamic” bandwidth ∼ cavity tunability



DETECTION OF QUANTUM MICROWAVES

The detection of individual microwave photons has been pioneered by atomic cavity quantum electrodynamics
experiments and later on transposed to circuit QED experiments

In both cases two-level atoms interact directly with a microwave field mode∗ in the cavity



Cavity-QED for photon counting

Can the field of a single photon have a large effect on the atom (TLS)?

Interaction: H = −d⃗ · E⃗, E(t) = E0 cosωqt

It’s a matter of increasing the coupling strength g between the atom and the field g = E⃗ · d⃗:

→ work with large atoms

→ confine the field in a cavity

E⃗ ∝
1

√
V
, V volume

κ rate of cavity photon decay
γ rate at which the qubit loses its excitation
to modes ̸= from the mode of interest

g ≫ κ, γ ⇐⇒ regime of strong coupling
coherent exchange of a field quantum between the atom (matter) and the cavity (field)



CAVITY QED SYSTEM

2

FIG. 1: (color online). a) Standard representation of cavity
quantum electrodynamic system, comprising a single mode of
the electromagnetic field in a cavity with decay rate κ cou-
pled with a coupling strength g = Ermsd/! to a two-level
system with spontaneous decay rate γ and cavity transit time
ttransit. b) Energy spectrum of the uncoupled (left and right)
and dressed (center) atom-photon states in the case of zero
detuning. The degeneracy of the two-dimensional manifolds
of states with n − 1 quanta is lifted by 2g

√
n + 1. c) Energy

spectrum in the dispersive regime (long dash lines). To sec-
ond order in g, the level separation is independent of n, but
depends on the state of the atom.

The key parameters describing a cQED system (see
Table I) are the cavity resonance frequency ωr, the atomic
transition frequency Ω, and the strength of the atom-
photon coupling g appearing in the Jaynes-Cummings
Hamiltonian [14]

H = !ωr

(
a†a +

1

2

)
+

!Ω

2
σz+!g(a†σ−+aσ+)+Hκ+Hγ .

(1)
Here Hκ describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate κ = ωr/Q,
while Hγ describes the coupling of the atom to modes
other than the cavity mode which cause the excited state
to decay at rate γ (and possibly also produce additional
dephasing effects). An additional important parameter
in the atomic case is the transit time ttransit of the atom
through the cavity.

In the absence of damping, exact diagonalization of the
Jaynes-Cumming Hamiltonian yields the excited eigen-
states (dressed states) [15]

|+, n⟩ = cos θn |↓, n⟩ + sin θn |↑, n + 1⟩ (2)

|−, n⟩ = − sin θn |↓, n⟩ + cos θn |↑, n + 1⟩ (3)

and ground state |↑, 0⟩ with corresponding eigenenergies

E±,n = (n + 1)!ωr ± !
2

√
4g2(n + 1) + ∆2 (4)

E↑,0 = −!∆

2
. (5)

In these expressions,

θn =
1

2
tan−1

(
2g

√
n + 1

∆

)
, (6)

and ∆ ≡ Ω − ωr the atom-cavity detuning.
Figure 1b) shows the spectrum of these dressed-states

for the case of zero detuning, ∆ = 0, between the atom
and the cavity. In this situation, degeneracy of the pair
of states with n quanta is lifted by 2g

√
n + 1 due to the

atom-photon interaction. In the manifold with a sin-
gle excitation, Eqs. (2) and (3) reduce to the maximally

entangled atom-field states
∣∣±, 0

〉
= (|↑, 1⟩ ± |↓, 0⟩) /

√
2.

An initial zero-photon excited atom state |↑, 0⟩ will there-
fore flop into a photon |↓, 1⟩ and back again at the vac-
uum Rabi frequency g/π. Since the excitation is half
atom and half photon, the decay rate of

∣∣±, 0
〉

is (κ+γ)/2.

The pair of states
∣∣±, 0

〉
will be resolved in a transmission

experiment if the splitting 2g is larger than this linewidth.
The value of g = Ermsd/! is determined by the transition
dipole moment d and the rms zero-point electric field
of the cavity mode. Strong coupling is achieved when
g ≫ κ, γ [15].

For large detuning, g/∆ ≪ 1, expansion of Eq. (4)
yields the dispersive spectrum shown in Fig. 1c). In this
situation, the eigenstates of the one excitation manifold
take the form [15]

∣∣−, 0
〉

∼ −(g/∆) |↓, 0⟩ + |↑, 1⟩ (7)∣∣+, 0
〉

∼ |↓, 0⟩ + (g/∆) |↑, 1⟩ . (8)

The corresponding decays rates are then simply given by

Γ−,0 ≃ (g/∆)2γ + κ (9)

Γ+,0 ≃ γ + (g/∆)2κ. (10)

More insight into the dispersive regime is gained by
making the unitary transformation

U = exp
[ g

∆
(aσ+ − a†σ−)

]
(11)

and expanding to second order in g (neglecting damping
for the moment) to obtain

UHU † ≈ !
[
ωr +

g2

∆
σz

]
a†a +

!
2

[
Ω +

g2

∆

]
σz . (12)

As is clear from this expression, the atom transition is ac-
Stark/Lamb shifted by (g2/∆)(n + 1/2). Alternatively,
one can interpret the ac-Stark shift as a dispersive shift
of the cavity transition by σzg

2/∆. In other words, the
atom pulls the cavity frequency by ±g2/κ∆.

A simple theoretical model (Jaynes-Cummings)
describes atoms as two-level, spin-like systems
interacting with a quantum oscillator
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FIG. 1: (color online). a) Standard representation of cavity
quantum electrodynamic system, comprising a single mode of
the electromagnetic field in a cavity with decay rate κ cou-
pled with a coupling strength g = Ermsd/! to a two-level
system with spontaneous decay rate γ and cavity transit time
ttransit. b) Energy spectrum of the uncoupled (left and right)
and dressed (center) atom-photon states in the case of zero
detuning. The degeneracy of the two-dimensional manifolds
of states with n − 1 quanta is lifted by 2g

√
n + 1. c) Energy

spectrum in the dispersive regime (long dash lines). To sec-
ond order in g, the level separation is independent of n, but
depends on the state of the atom.

The key parameters describing a cQED system (see
Table I) are the cavity resonance frequency ωr, the atomic
transition frequency Ω, and the strength of the atom-
photon coupling g appearing in the Jaynes-Cummings
Hamiltonian [14]

H = !ωr

(
a†a +

1

2

)
+

!Ω

2
σz+!g(a†σ−+aσ+)+Hκ+Hγ .

(1)
Here Hκ describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate κ = ωr/Q,
while Hγ describes the coupling of the atom to modes
other than the cavity mode which cause the excited state
to decay at rate γ (and possibly also produce additional
dephasing effects). An additional important parameter
in the atomic case is the transit time ttransit of the atom
through the cavity.

In the absence of damping, exact diagonalization of the
Jaynes-Cumming Hamiltonian yields the excited eigen-
states (dressed states) [15]

|+, n⟩ = cos θn |↓, n⟩ + sin θn |↑, n + 1⟩ (2)

|−, n⟩ = − sin θn |↓, n⟩ + cos θn |↑, n + 1⟩ (3)

and ground state |↑, 0⟩ with corresponding eigenenergies

E±,n = (n + 1)!ωr ± !
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4g2(n + 1) + ∆2 (4)

E↑,0 = −!∆
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In these expressions,
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(
2g
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∆

)
, (6)

and ∆ ≡ Ω − ωr the atom-cavity detuning.
Figure 1b) shows the spectrum of these dressed-states

for the case of zero detuning, ∆ = 0, between the atom
and the cavity. In this situation, degeneracy of the pair
of states with n quanta is lifted by 2g

√
n + 1 due to the

atom-photon interaction. In the manifold with a sin-
gle excitation, Eqs. (2) and (3) reduce to the maximally

entangled atom-field states
∣∣±, 0

〉
= (|↑, 1⟩ ± |↓, 0⟩) /

√
2.

An initial zero-photon excited atom state |↑, 0⟩ will there-
fore flop into a photon |↓, 1⟩ and back again at the vac-
uum Rabi frequency g/π. Since the excitation is half
atom and half photon, the decay rate of

∣∣±, 0
〉

is (κ+γ)/2.

The pair of states
∣∣±, 0

〉
will be resolved in a transmission

experiment if the splitting 2g is larger than this linewidth.
The value of g = Ermsd/! is determined by the transition
dipole moment d and the rms zero-point electric field
of the cavity mode. Strong coupling is achieved when
g ≫ κ, γ [15].

For large detuning, g/∆ ≪ 1, expansion of Eq. (4)
yields the dispersive spectrum shown in Fig. 1c). In this
situation, the eigenstates of the one excitation manifold
take the form [15]

∣∣−, 0
〉

∼ −(g/∆) |↓, 0⟩ + |↑, 1⟩ (7)∣∣+, 0
〉

∼ |↓, 0⟩ + (g/∆) |↑, 1⟩ . (8)

The corresponding decays rates are then simply given by

Γ−,0 ≃ (g/∆)2γ + κ (9)

Γ+,0 ≃ γ + (g/∆)2κ. (10)

More insight into the dispersive regime is gained by
making the unitary transformation

U = exp
[ g

∆
(aσ+ − a†σ−)

]
(11)

and expanding to second order in g (neglecting damping
for the moment) to obtain

UHU † ≈ !
[
ωr +

g2

∆
σz

]
a†a +

!
2

[
Ω +

g2

∆

]
σz . (12)

As is clear from this expression, the atom transition is ac-
Stark/Lamb shifted by (g2/∆)(n + 1/2). Alternatively,
one can interpret the ac-Stark shift as a dispersive shift
of the cavity transition by σzg

2/∆. In other words, the
atom pulls the cavity frequency by ±g2/κ∆.

− ωr cavity resonance frequency

− Ω atomic transition frequency

− g strength of the atom-photon coupling



Jaynes-Cummings model

Interaction of a two state system with quantized radiation in a cavity

HJC = 1
2ℏωqσ̂z + ℏωrâ†â + ℏg(âσ̂+ + â†σ̂−)

Parameter space diagram for cavity-QED

∆ = |ωr − ωq|

Γ = min{γ, κ, 1/T}

− ωr ∼ ωq resonance case

− ∆ = |ωr − ωq| ≫ g dispersive limit case



Dispersive regime of detuning g/∆ ≪ 1

χ =
g2

∆

→ ℏχσ̂z dispersive qubit state readout

→ 2χa†a number splitting

→ qubit frequency is a function of the cavity photon number

→ measuring the qubit frequency is equivalent to measuring the number of photons in the cavity



from cavity-QED to circuit-QED

In circuit QED the atom-photon interaction is implemented using artificial atoms, capacitively coupled to
transmission line resonators.

g is significantly increased compared to Rydberg atoms:

→ artificial atoms are large (∼ 300µm)
=⇒ large dipole moment

→ E⃗ can be tightly confined
E⃗ ∝

√
1/λ3

ω2λ ≈ 10−6 cm3 (1D) versus λ3 ≈ 1 cm3 (3D)
=⇒ 106 larger energy density

8 CHAPTER 2. REVIEW AND THEORY

[Leek07], coupling of two qubits via a cavity bus [Majer07, Sillanpää07], observation of
the

p
n nonlinearity of the Jaynes-Cummings ladder [Fink08], observation of the Lamb

shift [Fragner08], cooling and amplification with a qubit [Grajcar08], controlled symme-
try breaking in circuit QED [Deppe08], generation of Fock states [Hofheinz08] and arbi-
trary superpositions of Fock states [Hofheinz09], observation of collective states of up to 3
qubits [Fink09b], observation of Autler-Towns and Mollow transitions [Baur09], high drive
power nonlinear spectroscopy of the vacuum Rabi resonance [Bishop09], demonstration
of two qubit entanglement using sideband transitions [Leek09], demonstration of gates
and basic two qubit quantum computing algorithms [DiCarlo09], violation of Bell’s in-
equality [Ansmann09], demonstration of single shot qubit readout [Mallet09], implemen-
tation of separate photon storage and qubit readout modes [Leek10], measurement of the
quantum-to-classical transition and thermal field sensing in cavity QED [Fink10], quan-
tum non-demolition detection of single microwave photons [Johnson10], implementa-
tion of optimal qubit control pulse shaping [Motzoi09, Chow10a, Lucero10], preparation
and generation of highly entangled 2 and 3-qubit states [Chow10b, Neeley10, DiCarlo10]
and the first measurement of microwave frequency photon antibunching [Bozyigit10c,
Bozyigit10b] using linear amplifiers and on-chip beam splitters.

Similarly, strong interactions have also been observed between superconducting
qubits and freely propagating photons in microwave transmission lines. This includes
the observation of resonance fluorescence [Astafiev10a], quantum limited amplification
[Astafiev10b] and electromagnetically induced transparency [Abdumalikov10] with a sin-
gle artificial atom. The rapid advances in circuit QED furthermore inspired and enabled
the demonstration of single phonon control of a mechanical resonator passively cooled to
its quantum ground state [O´Connell10].

We will now review the basics of circuit QED using transmon type charge qubits and
coplanar waveguide resonators.

L=19 mm

a

b

Figure 2.1: Schematic of an experimental cavity QED (a) and circuit QED (b) setup. a, Optical analog of circuit
QED. A two-state atom (violet) is coupled to a cavity mode (red). b, Schematic of the investigated circuit QED
system. The coplanar waveguide resonator is shown in light blue, the transmon qubit in violet and the first
harmonic of the standing wave electric field in red. Typical dimensions are indicated.

(a) (g/2π)cavity ∼ 50 kHz

(b) (g/2π)circuit ∼ 100 MHz (typical)

104 larger coupling than in atomic systems



coupling qubits with 3D cavities

→ itinerant and cavity single microwave photon counter (SMPD)

SMPD

Phys. Rev. Lett. 126, 141302 (2021) 

CAVITY PHOTONSITINERANT PHOTONS

Nature 600, 434–438 (2021) ← spin fluorescence detection
Nature 619, 276–281 (2023) ← single spin flip

⊙ 4WM process: the incoming photon is converted
into an excitation of the qubit

⊙ readout of the qubit state with QIS methods

⊙ efficiency η ∼ 0.5,
dark counts Γd ∼ 90 s−1

⊙ on/off resonance → monitor the dark counts,
which set the background in these experiment



SMPD-HALOSCOPE prototype

⊙ hybrid (normal-superconducting) cavity
7.37 GHz, tunable, Q0 = 9 × 105

⊙ T=14 mK delfridge base temperature
@ Quantronics lab (CEA, Saclay)

⊙ 2 T-field

⊙ triplet of rods controlled by a
nanopositioner mounted at the MC stage to
probe for different axion masses

⊙ passive protection by the B-field for SMPD
and TWPA

https://arxiv.org/abs/2403.02321



a four wave mixing process
an atom coupled to a single mode is not good for single photon detection, as you want the conversion process to

be optimized (η ≃ 1) =⇒ 4WM is implemented on the SC circuit

ωb + ωp = ωq + ωw

https://arxiv.org/abs/2403.02321



readout protocol: the SMPD is operated through nested cycles

→ basic block (d) is detection + qubit readout (non deterministic)
→ measure SMPD efficiency and cavity parameters
→ control the nanopositioner for cavity frequency tuning
→ monitor dark counts under different conditions:

at resonance ωb = ωc and at 4 sidebands ωb = ωc ± 1 MHz, ωb = ωc ± 2 MHz



A background-limited search: dark counts
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⊙ counts at ωb = ωc registered in a time interval of 28.6 s
(set by readout protocol structure)
⇐⇒ average ∼ 90 Hz dark count rate

⊙ both the counts at resonance and on sidebands
ωb = ωc ± 1, 2 MHz vary beyond statistical uncertainty
expected for poissonian counts

⊙ notice a correlation between the two channels

⊙ and a systematic excess at cavity frequency → the cavity sits
at a higher T

https://arxiv.org/abs/2403.02321



A background-limited search: dark counts

We compute the Allan variance to assess the long term stability of the detector
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→ click number fluctuations decrease as 1/τ ,
up to a maximum observation time τm of
about 10 min

→ for τ > τm the Allan variance increases →
random walk

→ the differential channel follows the 1/τ
trend up to a longer time interval
τ ∼ 30 min → small correlation

→ no additional noise in the data recorded
between successive step motion intervals
compared to unperturbed cavity



beyond SMPD diagnostics: UPDATING THE EXCLUSION PLOT FOR gaγγ

→ data analysed in 420 kHz ≃ 14∆νc range

→ reached the extended QCD axion band with a short integration time (10 min), in spite of the small B-field

⊙⊙ x20 gain [conservative] in scan speed vs linear amplifiers https://arxiv.org/abs/2403.02321



PERSPECTIVES

▶ what next: scaling up to observatory =⇒ increase the B field, and probe for axions in a much broader range

▶ this is particle physics with lab-scale, tabletop experiments
→ new windows at energy scales not accessible to collider experiments
https://www.science.org/doi/10.1126/science.aal3003
https://arxiv.org/pdf/2311.01930

▶ in line with the approach outlined in the DRD5 proposal
(see the document prepared by the TSF5 co-conveners, guided by M. Doser and M. De Marteau)


