

ELECTRON - Development of High Resolution Metallic Microcalorimeters for a Future Neutrino Mass Experiment

N. Kovač¹; T. E. App¹, F. Bauer², B. Bornschein¹, D. de Vincenz¹, W. Gil¹, F. Glück¹, S. Heyns¹, S. Kempf^{2,3}, M. C. Langer², M. Müller², R. Sack¹, M. Schlösser¹, M. Steidl¹ and K. Valerius¹

¹Inst. for Astroparticle Physics (IAP)[,] Karlsruhe Institute of Technology (KIT) ²Inst. of Micro- and Nanoelectronic Systems (IMS), Karlsruhe Institute of Technology (KIT) ³Inst. for Data Processing and Electronics (IPE), Karlsruhe Institute of Technology (KIT)

Paramagnetic Sensor Pick-up Coil Particle Absorber Φ_{ς} Current-sensing SQUID¹

¹Superconducting Quantum Interference Device

www.kit.edu

KIT - The Research University in the Helmholtz Association

Motivation - Neutrino Mass

- Hunt for the absolute scale of the neutrino mass ongoing since the discovery of the neutrino oscillations at the end of last millennium
 Direct measurements:
 - ➡ Look for neutrino imprint in the end-point region of the beta decay (Tritium) or electron capture (Holmium) spectrum

Motivation - Neutrino Mass

Hunt for the absolute scale of the neutrino mass ongoing since the discovery of the neutrino oscillations at the end of last millennium
 Limit from the KATRIN experiment :

 $m_{\nu_e} \leq 0.8 \text{ eV/c}^2 \quad (90 \% \text{ C}.\text{L}.)$

The KATRIN collaboration, Nat. Phys. 18, 160–166 (2022)

➡ Projected final KATRIN sensitivity:

$$m_{\nu_e} \geq 0.2 \text{ eV/c}^2 \quad (90 \% \text{ C} . \text{L}.)$$

The KATRIN collaboration et al 2021 JINST 16 T08015

Limits from Cosmology:

 $\sum m_{\nu} < 0.11 \text{ eV/c}^2$ (95 % C . L.)

N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020)

\Rightarrow The goal of future neutrino mass experiments will be to probe the sub-100 meV region of neutrino mass!

Motivation - KATRIN

\Rightarrow Currently leading experiment in direct determination of electron (anti-)neutrino mass!

4 Pisa Meeting 2024 - Neven Kovač

\Rightarrow KATRIN beamline gives us a unique opportunity to develop new technologies!

\Rightarrow KATRIN beamline gives us a unique opportunity to develop new technologies!

Future Neutrino Mass Experiment with Tritium

Reaching sub-100 meV sensitivity:

- Significant increase in the statistics
- Reduction of the background
- Increase in the energy resolution

Metallic Microcalorimeters:

- Energy resolution orders of magnitude better compared to conventional detectors
- Close to 100% quantum efficiency (for photons)
- Near linear detector response over a wide energy range
- No surface dead layer

high-resolution X-ray spectroscopy

Metallic Magnetic Calorimeters (MMCs)

Cryogenic micro-calorimeters \Rightarrow T_{opt} ~ 10 mK

Working principle based on the magnetisation response of the paramagnetic sensor

$$\delta \Phi \propto \delta M \propto \frac{\partial M}{\partial T} \delta T \propto \frac{\partial M}{\partial T} \frac{\delta E}{C_{\text{tot}}}$$

C. Enss et al., Cryogenic Particle Detection, pp. 151-216. Springer Berlin Heidelberg, 2005

Pisa Meeting 2024 - Neven Kovač

9

Metallic Magnetic Calorimeters (MMCs)

Cryogenic micro-calorimeters $\Rightarrow T_{opt} \sim 10 \, mK$ World leading in energy resolution!

$$\Delta E_{\text{FWHM}}^{@ 5.9 \text{ keV}} = \left(1.25 \pm 0.17_{stat. -0.05_{syst.}}^{+0.07_{syst.}} \right) \text{ eV}$$

$$\Delta E_{\rm FWHM} \approx 2\sqrt{2\ln(2)}\sqrt{4k_{\rm B}C_{\rm e}T^2} \left(\frac{1}{\beta(1-\beta)}\frac{\tau_r}{\tau_d}\right)^{1/4}$$

C. Enss et al., Cryogenic Particle Detection, pp. 151-216. Springer Berlin Heidelberg, 2005

Institute for Astroparticle Physics (IAP), Karlsruhe Institute for Technology

10 Pisa Meeting 2024 - Neven Kovač

Metallic Magnetic Calorimeters (MMCs)

For KATRIN++ we need a differential detector able to perform electron spectroscopy with ultra-high energy resolution!
MMCs not tested with external electron sources! Until now...

The ELECTRON Project

KIT internal project ⇒ funded through "KIT Future Fields, Funding Stage 2"
Aims:

Test whether MMC detectors can be used to measure external electrons
 Study the detector-electron interplay and investigate potential systematic effects
 First ever measurement of the differential tritium spectrum with a cryogenic micro-calorimeter

ELECTRON - Experimental set-up

Commercially available Bluefors ³He/⁴He dilution refrigerator
 Detector and read-out SQUIDs designed and fabricated at KIT-IMS

PhD Thesis M. Müller

ELECTRON - First measurements with ⁸³Rb/^{83m}Kr **source**

ELECTRON - Measurements with ⁸³Rb/^{83m}Kr source

Analysis of the signal pulse shape Averaging several signals corresponding to:

> I. 30.4 keV L-32 conversion electrons II. 17.8 keV K-32 conversion electrons \Rightarrow From the ${}^{83}Rb/{}^{83m}Kr$ spectrum III.12.6 keV K_{α} X-rays

Consistency between detector responses to electrons and photons is important for the first stage analysis of the measured spectra!

 \Rightarrow Detector response to external electrons and X-ray photons shown to be consistent!

ELECTRON - ⁸³Rb/^{83m}Kr Spectrum

Preliminary

 K_{α_1}

Differential 83 Rb/ 83m Kr spectrum with the highest resolution ever recorded

- ➡ Successful identification of individual spectral lines
- → Achieved resolution (X-ray lines): $\Delta E_{FWHM} = 25 \text{ eV} @ 12.6 \text{ keV}$
- → Resolution expected to be below 10 eV in the next runs!

Institute for Astroparticle Physics (IAP), Karlsruhe Institute for Technology

data

250

≥²⁰⁰′

fit: E_{FWHM} = 25.77 ± 0.1558 eV

ELECTRON - ⁸³Rb/^{83m}Kr **Spectrum**

Analysis of the acquired spectra

 \Rightarrow Comparison with the spectrum measured with the Silicon Drift Detector (SDD) detector using the same 83 Rb/ 83m Kr source

ELECTRON - Further Steps

12 µm Au layer Bauer Ę 1.15 Ц. Simulations by 1600 0 nm 0.05 • c 0.04 AI V Cu Ag Au 0.03 Ξ) 0.02 0.01 0.00 0.0 0.2 0.4 0.6 0.8 1.0 E/E_0

Springer New York, NY, 2018

Next steps:

- 1. Measurement with sub-10 eV resolution (improved thermalization of the detector platform)
- 2. Investigation of the systematic effects, such as backscattering and sputtering

ELECTRON - Further Steps

Next steps:

platform)

12 µm Au layer Bauel Ц.

2. Investigation of the systematic effects, such as backscattering and sputtering

1. Measurement with sub-10 eV resolution (improved thermalization of the detector

19 Pisa Meeting 2024 - Neven Kovač

Institute for Astroparticle Physics (IAP), Karlsruhe Institute for Technology

Ę

1.15

ELECTRON - Further Steps

Next steps:

platform)

G. Zeller, arXiv:2310.16645

 T_2 β^- -Zerfall $3He^+ + T$ $3He^+ + T$ Graphen $3He + T^+$ SiO_2 Si SiO_2 Si

1. Measurement with sub-10 eV resolution (improved thermalization of the detector

3. Measurement of the novel compact tritium source \rightarrow Tritium bound on graphene

2. Investigation of the systematic effects, such as backscattering and sputtering

- Tritium graphene source quasi atomic tritium source
 - Tritium atoms are covalently bound on graphene substrate
 - Samples developed and fabricated at Tritium Laboratory Karlsruhe
 - ♦ Compact tritium source → can be mounted directly in the cryostat
 - Specially designed detector-source enclosure required to prevent contamination of the cryostat!

Using KATRIN as a model for the next generation neutrino experiments with tritium

- → KATRIN approaches the target goal of 1000 days of Tritium beta scans → final sensitivity just above 200 meV
- → By the end of 2025, TRISTAN keV-sterile neutrino search will start —> see talk by F. Edzards
- → Next generation neutrino mass experiments will require years of research and development of new technologies

Using KATRIN as a model for the next generation neutrino experiments with tritium

- \Rightarrow KATRIN approaches the target goal of 1000 days of Tritium beta scans \rightarrow final sensitivity just above 200 meV
- By the end of 2025, TRISTAN keV-sterile neutrino search will start —> see talk by F. Edzards
- → Next generation neutrino mass experiments will require years of research and development of new technologies

Institute for Astroparticle Physics (IAP), Karlsruhe Institute for Technology

Current KATRIN Scientific Phases!

R&D Towards The Future

23 Pisa Meeting 2024 - Neven Kovač

Institute for Astroparticle Physics (IAP), Karlsruhe Institute for Technology

Quantum Sensor Array at KATRIN beamline

- KATRIN beamline as a test facility for next generation neutrino mass experiments with tritium
 MMCs (and TESs) highly sensitive to external magnetic fields:
 - → Sensitivity of detectors decreases with the higher magnetic fields
 - ➡ MMCs can be optimised to operate at ~ 20 mT fields

Quantum Sensor Arrays have to be operated at cryogenic (mK) temperatures

- ➡ Interface between source at room temperature and detector array at mK temperatures needed
- ➡ Graduate cooling of the beamline after the spectrometer needed
- Cryostat powerful enough to cool down large detector array and keep it stable for several months of operation

Idea from the Qantum Sensor workshop last October:

 Cold chicane to move the detector array from direct line of sight from the spectrometer + to gradually cool the beamline

A. Nava and M. Biassoni

Quantum Sensor Array at KATRIN beamline

Modifications of the KATRIN beamline for quantum sensor integration

currently under investigation → Global magnetic field needs to be decreased by a factor of 10 → Cryostat hosting the detector array needs to be integrated in the beamline, but off-axis from the (room-temperature) main spectrometer ➡ Beamline needs to be pre-cooled before the cryostat ······ Cold chicane with detector cryostat Segmented Transport and Tritium source detector pumping Rear wall and Main spectrometer

Global magnetic field decreased by factor of $10 \Rightarrow \sim 20$ mT magnetic field at detector position

24 Pisa Meeting 2024 - Neven Kovač

electron gun

Conclusion and Outlook

ELECTRON

- ⇒ Showed that Metallic Magnetic Calorimeters can be employed for measurements of the external light charged particles
- → Upcoming measurement aim at sub-10 eV resolution
- ➡ In the near future first measurements of the tritium spectrum with the cryogenic microcalorimeters
- Many challenges still ahead of us
 - ➡ Development of large quantum sensor arrays (order of 10⁶ pixels) and accompanying read-out, compatible with low magnetic fields (10s of mT)
 - Design and construction of a large dilution refrigerator to house the detector array
 - ➡ Integration of the quantum sensor array at the KATRIN beamline
 - → Development of the atomic tritium source

\Rightarrow KATRIN invites interested groups and individuals to join the effort!

