

Positron emission tomography imaging with measurements of the polarization-correlated Compton events with single-layer gamma-ray polarimeters

Ana Marija Kožuljević¹, Tomislav Bokulić¹, Darko Grošev², Zdenka Kuncic³, Siddharth Parashari¹, Luka Pavelić⁴, Marijan Žuvić² and Mihael Makek¹

16th Pisa Meeting on Advanced Detectors May 26th, 2024 – June 1st, 2024

¹ Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
 ² Department of Nuclear Medicine and Radiation Protection, University Hospital Centre Zagreb, Zagreb, Croatia
 ³ School of Physics, The University of Sydney, Sydney, NSW, Australia
 ⁴ Institute for Medical Research and Occupational Health, Zagreb, Croatia

Positron emission tomography

- Diagnostic tool in medical imaging
- Based on coincidence detection of the two gammas from positron annihilation

Random coincidences

True coincidences

Scatter coincidences

Motivation

Two gammas from positronium annihilation have:

- 511 keV energy
- opposite momenta
- orthogonal polarizations

Motivation

Two gammas from positronium annihilation have:

Implemented in PET

NO

- 511 keV energy YES
- opposite momenta YES
- orthogonal polarizations

Motivation

Implemented in PET

Two gammas from positronium annihilation have:

- 511 keV energy YES
- opposite momenta YES
- orthogonal polarizations NO

Polarization correlations could be used as an additional handle to reduce background in PET

Improved image quality

*McNamara A et al. (2014) Phys. Med. Biol., 59: 7587; Toghyani M et al. (2016) Phys. Med. Biol., 61: 5803; Watts DP et al. (2021) Nat. Commun., 12: 2646; Kim D et al. (2023) JINST, 18(07):P07007

Double Klein-Nishina differential cross section:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega_1 \mathrm{d}\Omega_2} = \frac{r_0^4}{16} F(\theta_1) F(\theta_2) \left\{ 1 - \frac{G(\theta_1) G(\theta_2)}{F(\theta_1) F(\theta_2)} \cos[2(\phi_1 - \phi_2)] \right\} \qquad F(\theta_i) = \frac{[2 + (1 - \cos \theta_i)^3]}{(2 - \cos \theta_i)^3}, \ G(\theta_i) = \frac{\sin^2 \theta_i}{(2 - \cos \theta_i)^2}$$

Double Klein-Nishina differential cross section:

$$\frac{d^{2}\sigma}{d\Omega_{1}d\Omega_{2}} = \frac{r_{0}^{4}}{16}F(\theta_{1})F(\theta_{2})\left\{1 - \frac{G(\theta_{1})G(\theta_{2})}{F(\theta_{1})F(\theta_{2})}\cos[2(\phi_{1} - \phi_{2})]\right\}$$

$$F(\theta_{i}) = \frac{[2 + (1 - \cos\theta_{i})^{3}]}{(2 - \cos\theta_{i})^{3}}, \quad G(\theta_{i}) = \frac{\sin^{2}\theta_{i}}{(2 - \cos\theta_{i})^{2}}$$
Maximum at $|\phi_{1} - \phi_{2}| = 90^{\circ}$

Double Klein-Nishina differential cross section:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega_1 \mathrm{d}\Omega_2} = \frac{r_0^4}{16} F(\theta_1) F(\theta_2) \left\{ 1 - \frac{G(\theta_1) G(\theta_2)}{F(\theta_1) F(\theta_2)} \cos[2(\phi_1 - \phi_2)] \right\} \qquad F(\theta_i) = \frac{[2 + (1 - \cos\theta_i)^3]}{(2 - \cos\theta_i)^3}, \quad G(\theta_i) = \frac{\sin^2 \theta_i}{(2 - \cos\theta_i)^2}$$

 $|\psi_1 - \psi_2| = 90$

Polarimetric modulation factor:

$$\mu \equiv \frac{P(\phi_1 - \phi_2 = 90^\circ) - P(\phi_1 - \phi_2 = 0^\circ)}{P(\phi_1 - \phi_2 = 90^\circ) + P(\phi_1 - \phi_2 = 0^\circ)}$$

Double Klein-Nishina differential cross section:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega_1 \mathrm{d}\Omega_2} = \frac{r_0^4}{16} F(\theta_1) F(\theta_2) \left\{ 1 - \frac{G(\theta_1) G(\theta_2)}{F(\theta_1) F(\theta_2)} \cos[2(\phi_1 - \phi_2)] \right\}$$

$$F(\theta_i) = \frac{[2 + (1 - \cos \theta_i)^3]}{(2 - \cos \theta_i)^3}, \quad G(\theta_i) = \frac{\sin^2 \theta_i}{(2 - \cos \theta_i)^3}$$

Maximum at $|\phi_1 - \phi_2| = 90^\circ$

Polarimetric modulation factor:

$$\mu \equiv \frac{P(\phi_1 - \phi_2 = 90^\circ) - P(\phi_1 - \phi_2 = 0^\circ)}{P(\phi_1 - \phi_2 = 90^\circ) + P(\phi_1 - \phi_2 = 0^\circ)}$$

• Max for
$$\Theta_1 = \Theta_2 = 82^\circ$$
:
 $\mu = 0.48$

Background events will lack such correlation!

Laboratory setup

Pixelated Compton polarimeters in one layer

Parashari et al., Nucl. Instrum. Methods Phys. Res. A (2022) 167186

Laboratory setup

Parashari et al., Nucl. Instrum. Methods Phys. Res. A (2022) 167186

Pixelated Compton polarimeters in one layer

- Scintillating crystals
 - GaGG:Ce
 - 8.1% ± 0.5% at 511 keV
 - LYSO:Ce

 \bullet

- 13.7% ± 0.9% at 511 keV
- Silicon Photomultiplier (SiPM)
- (Hamamatsu Photonics, Japan, model S13361-0808AE), 1:1 coupling
- ToFPET2 ASIC read-out system

Polarization correlations - reconstruction

After the acceptance correction $N_{\text{corr}}(\phi_1 - \phi_2) = \frac{N(\phi_1 - \phi_2)}{A_n(\phi_1 - \phi_2)}$

Distribution of the azimuthal angle differences after both gammas undergo Compton scattering

Blue – measured data

Red – Klein-Nishina fit function $N_{cor}(\phi_1 - \phi_2) = M[1 - \mu \cos(2(\phi_1 - \phi_2))]$

Polarization correlations - reconstruction

After the acceptance correction $N_{\text{corr}}(\phi_1 - \phi_2) = \frac{N(\phi_1 - \phi_2)}{A_n(\phi_1 - \phi_2)}$

Distribution of the azimuthal angle differences after both gammas undergo Compton scattering

Blue – measured data **Red** – Klein-Nishina fit function $N_{cor}(\phi_1 - \phi_2) = M[1 - \mu \cos(2(\phi_1 - \phi_2))]$

• More precise energy and angular selection criteria lead to higher modulation factors

• Finely segmented scintillators are the best choice to distinguish between the true and false coincidences

Polarization correlations - addendum

Parashari et al. (2024) Physics Letters B, 852:138628

Experimental setup for measuring polarization correlations after one of the annihilation photons undergoes previous scatter

Polarization correlations - addendum

Experimental setup for measuring polarization correlations after one of the annihilation photons undergoes previous scatter

Polarization correlations observed even after the scatter of one of the annihilation gammas

Azimuthal angle difference distributions observed for different Compton scattering angles of the scattered annihilation photons

Polarization correlations - addendum

Parashari et al. (2024) Physics Letters B, 852:138628

Experimental setup for measuring polarization correlations after one of the annihilation photons undergoes previous scatter

Polarization correlations observed even after the scatter of one of the annihilation gammas

Limits the ability of the method to reduce background by eliminating scatter coincidences The method is still applicable for random and multiple coincidences

Azimuthal angle difference distributions observed for different Compton scattering angles of the scattered annihilation photons

The PET Demonstrator

- Four super-modules of segmented scintillators
 - 16 x 16 pixels in each module

- Diameter range: 420 700 mm
- Precise rotation around the scanner axis

Preliminary results

- Two Ge-68 extended sources in aluminum encapsulation
- Epoxy phantom, 3 cm in diameter
- Data acquired with 3.2 mm matrix pitch GaGG:Ce modules

Activity (each source):	45.5 MBq
Distance between the sources:	~ 2 cm
Number of positions (angle):	12 (15 deg)
Time of acquisition (per position):	~ 2.3 h
Diameter of the PET ring:	430 mm

Spatial resolution of the novel PET device

Preliminary results

Image profile from PE events

Image profile from events with polarization correlations where $\Theta \in [72,90]$, $|\Delta \phi| \in [70, 110]$

Spatial resolution of the novel PET device

Preliminary results

Image profile from PE events

Image profile from events with polarization correlations where $\Theta \in [72,90]$, $|\Delta \phi| \in [70, 110]$

Signal to random background ratio (from coincidence time spectra)

Coincidence time spectrum from PE events

Coincidence time spectrum from events with polarization correlations where $\Theta \in [72,90]$, $|\Delta \phi| \in [70, 110]$

Signal to random background ratio (from coincidence time spectra)

Coincidence time spectrum from PE events

Total signal (|**∆t**| < 2500 ps)

Background signal (|Δt| >10 000 ps & |Δt| <15 000 ps) Coincidence time spectrum from events with polarization correlations where $\Theta \in [72,90]$, $|\Delta \phi| \in [70, 110]$

 $SBR = (A_{tot} - A_{BG})/A_{BG}$

Signal to random background ratio (from coincidence time spectra) Preliminary results

Selection of events with polarization correlations where $\Theta \in [72,90], |\Delta \phi| \in [70, 110]$

Selection of events with polarization correlations where $\Theta \in [72,90]$, $|\Delta \phi| \in [-20, 20]$

		Polarization correlations	
Type of interaction	Photoelectric effect	Θ <i>∈</i> [72,90], Δφ <i>∈</i> [70, 110]	Θ <i>∈</i> [72,90], Δφ <i>∈</i> [-20, 20]
SBR	46.84	58.86	39.42
Difference	-	~ +25%	~ -15%

Limitations of the current setup

- Small field of view
- Limited opportunities for testing with strong sources
- Ambiguity in the first hit selection resulting in reduced spatial resolution

Conclusions

- It is possible to measure polarization correlations of the annihilation quanta using single-layer Compton polarimeters.
- We have demonstrated that image reconstruction solely from polarization correlated annihilation quanta is possible.
- SBR from coincidence time spectra of correlated events exhibits background reduction when compared to events with PE.

Thank you!

This work was supported by the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Program Efficient Human Resources 2014–2020, Grant number PZS-2019-02-5829.

