

From Dark Matter Searches to Proton Therapy

Vincenzo Boccia on the behalf of the **DAMON** collaboration (vincenzo.boccia@na.infn.it)

16TH PISA MEETING ON ADVANCED DETECTORS

Finanziato dall'Unione europea NextGenerationEU

Outline

- The problem of target fragmentation in proton therapy
- Nano Imaging Trackers (NIT): a novel kind of nuclear emulsion film
- Direct meAsureMent of target fragmentation (DAMON): a new approach to measurements of proton-induced target fragmentation
- First results of the DAMON project

Nuclear Fragmentation in Proton Therapy

- Charged Particle therapy is a cancer treatment employing p or ¹²C beams
- Favorable depth-dose profile
 (Bragg Peak) → precise dose
 localization for deep tumors
- In proton therapy, target fragmentation has a significant impact in the entrance channel, where healthy tissues are located
- Direct detection of target fragments is challenging: so far little data has been collected and only with inverse kinematics approaches (FOOT, Poster 263)

16th Pisa Meeting on Advanced Detectors - Vincenzo Boccia

Relative Dose

Bragg Peak: ≈ 40% cell killing, ≈ 1% cells undergoing nuclear inelastic interactions

Expected Target Fragments' Ranges in H₂0

Fragment	E (MeV)	LET ($keV/\mu m$)	Range (µm)
^{15}O	1.0	983	2.3
^{15}N	1.0	925	2.5
^{14}N	2.0	1137	3.6
^{13}C	3.0	951	5.4
^{12}C	3.8	912	6.2
^{11}C	4.6	878	7.0
^{10}B	5.4	643	9.9
⁸ Be	6.4	400	15.7
⁶ Li	6.8	215	26.7
^{4}He	6.0	77	48.5
^{3}He	4.7	89	38.8
^{2}H	2.5	14	68.9

From: Tommasino F. and Durante Cancers 2015, 7(1), 353-381;

Depth

Nuclear Emulsion Films

- Large number of silver halide crystals (generally *AgBr*) dispersed in an organic gelatine binder
 - Formation of the **latent image**:

$$Ag^+ + e^- \rightarrow Ag$$

• Signal amplification with a reduction agent (chemical development)

- Several **applications**:
 - HEP: **OPERA**, SND@LHC, FASER, DsTau...
 - Medical Physics: FOOT, DAMON, ...
 - Muon Radiography...
- Features of OPERA-like emulsions:
 - average crystal diameter of 200 nm, a granularity of 1 μm and a sensitivity to MIPs of ~ 30 grains / 100 μm

Example of a track in a nuclear emulsion

From: G. De Lellis et al., Journal of Instrumentation

Automated optical microscope for OPERA-like emulsion films

Scanning with automated optical microscopes

Offline track and event reconstruction

Nano Imaging Trackers (NIT)

- Nano Imaging Trackers (NIT) are a novel kind of fine grained nuclear emulsion films
- NIT were designed to achieve a directional direct detection of WIMP-induced nuclear recoils
- The expected nuclear recoil track lengths in NIT are of the order of **100 nm** → extremely high spatial resolution required
- New production method: finer AgBr crystals (tunable from 20 nm to 80 nm) and dedicated low temperature development
- NIT production facilities in Nagoya (Japan) and Gran Sasso (LNGS, Italy)

LNGS Gel Production Machine

Undeveloped NIT sample

NIT Readout: Super Resolution

- Tracks shorter than $\sim 200 \ nm$ can not be resolved due to the optical diffraction limit
 - About 10% of proton induced target fragments (200 MeV) are expected to have **track lenghts in NIT** < 1 μm
- X-ray or Scanning Electron Microscope (SEM) cannot be employed on a large scale because of their limited speed → new approach employing an optical super-resolution microscope

5×10⁵ protons @200MeV on 20 NIT

Localized Surface Plasmon Resonance

- Super-resolution is achieved by employing the **localized surface plasmonic resonance** (LSPR)
- Localized surface plasmons are non-propagating excitations of the conduction electrons of metallic nanostructures immersed in a dielectric → silver grains in NIT exhibit LSPR at visible wavelengths!

LSPR depends on the **shape** and **orientation** of the nanoparticle

Maximum reflected light when E field is parallel to major axis → possible to resolve close structures!

Super Resolution LSPR Optical Microscope

- 8x input images obtained with different polarizations (obtained with a liquid crystal polarizer)
- Tracks down to 50 nm have been reconstructed

From: Alexandrov et al. Scientific Reports volume 13, Article number: 22813 (2023)

745 nm

100 keV Carbon ion in NIT

16th Pisa Meeting on Advanced Detectors - Vincenzo Boccia

DAMON: A new approach to Target Fragmentation

- The DAMON (Direct meAsureMent of target fragmentation) project (PRIN 2022) aims at measuring for the first time proton-induced target fragmentation in direct kinematics
- Direct detection of short fragments made possible by NIT **acting both as target and tracking devices**
- The estimated interaction probability for 200 MeV protons in a detector with 20 NIT is $\sim 1\%$
- Among all interactions (Geant4 Simulation):
 - ~38 % occur in the emulsion gel (C, O, H, N, Ag, Br)
 - ~62% occur in the plastic support (Polystirene, $(C_8H_8)_n$)
 - ~15% of interactions on Ag, Br
- Typical energies of fragments, of the order of MeV, make them travel at least 300 nm → detectable!

8

Fragments' Z

Experimental Campaigns

- Two exposures perfomed so far
 - **Pilot run** with an exposure of 19 NITs to 211 MeV protons at the Trento proton therapy center
 - Proton **sensitivity test** at CNAO (Pavia) to 70 MeV protons
- NIT samples were produced in LNGS and kept in a refrigerated box during transport to minimize thermal noise

CNAO Exposure: single high intensity spot (10⁷ protons) Trento Exposure: uniform density of 10^4 protons cm^{-2}

- Sensitivity test showed that current NIT are not sensitive enough to reconstruct primary protons above 70 MeV!
- Tests ongoing with hybrid OPERA-NIT detectors

9

16th Pisa Meeting on Advanced Detectors - Vincenzo Boccia

Pilot Run Readout

- Target density for the Pilot Run was 10⁴ protons cm⁻² → 5x5 grid for uniform exposure
- NIT size was ~ 6x4 cm² with two sensitive gelatine layers (~ 60 μm) deposited on both sides of a polystyrene support (~ 200 μm)
- Two step readout: **optical scan** and
 SR scan

Fast Scan Features

<u>View Size</u>	800x600 μm	
<u>Z step</u>	0.75 μm	
<u>Scan Speed</u>	$\sim 3 \ cm^2/h$	

Trento XY Proton Distribution @Target

16th Pisa Meeting on Advanced Detectors - Vincenzo Boccia

Offline Reconstruction Workflow

- After scanning, clusters are merged to reconstuct **grains**
- Aligned grains are linked together to form segments in a single layer called micro-tracks (MTs)
- Background grains can be isolated (thermal noise...) or clustered (film damage, dust specks...)

MTs + Background Grains

- Very low background expected:
 - Not sensitive to MIPs or primary protons
 - Environmental radioactivity (**mainly Radon** and Uranium/Thorium producing $\sim 20~\mu m~\alpha$ tracks)
- Vertex search
 - At least one secondary track longer than 25 μm required
 - Tracks shorter than 5 grains excluded to reduce background

Results from Fast Scanning

- After the Pilot Run, top-side scanning performed with the fast optical microscope
- About 1500 reconstructed interactions
- Currently on-going: scanning of these fragmentation vertices with SR microscope

Track Length [µm]

Vertex Multiplicity [Target Fragments]

First Application of SR Microscope

- Once a fragmentation interaction has been reconstructed, a second scan can be performed
- Fiducial marks have been used as reference system

SR Workflow

16th Pisa Meeting on Advanced Detectors - Vincenzo Boccia

14

Conclusions

- DAMON is a new experiment aiming at measuring proton induced target fragmentation in direct kinematics
- NIT are used both as target and tracking devices to achieve the needed spatial resolution
- Analysis of the Pilot Run: more than 1500 interactions identified via fast scanning!
- On-going
 - Optimization of SR system for current NIT sample
 - SR scanning of reconstructed interactions and study of grain density for charge ID

