16TH PISA MEETING ON ADVANCED DETECTORS La Biodola, Isola d'Elba, May 26-June 1, 2024

A novel detector for 4D tracking in particle therapy

E.M.Data^{1,2*}, F.Milian^{1,3}, M.Abujami^{1,2}, D.Bersani⁴, P.Cerello¹, M.Donetti⁵, M.Fadavi Mazinani¹, V.Ferrero¹, E.Fiorina¹, S.Garbolino¹, M.Amin Hosseini^{1,2}, D. M. Montalvan Olivares^{1,2}, F.Pennazio¹, M.Pullia⁵, S.Ranjbar^{1, 2}, J.F.Werner⁶, R.J.Wheadon¹, A.Vignati^{1,2}, R.Cirio^{1,2}, R.Sacchi^{1,2}, S.Giordanengo¹

1. INFN Torino, Torino, Italy

- 2. University of Turin, Department of Physics, Torino, Italy
- 3. State University of Santa Cruz, Ilhéus, BA, Brazil
- 4. INFN Pisa, Pisa, Italy
- 5. Fondazione CNAO
- 6. Institute of Medical Engineering, Universität zu Lübeck, Germany

*emanuelemaria.data@unito.it

Motivation

New technologies for:

- Dose delivery
 System
- Range verification
 for particle therapy
 applications
 - Beam monitors:
 - Position and shape
 measurement
 Denticle C

Particle flux measurement

1. Proton and carbon ion counter based on silicon sensors

Summary

1. Proton and carbon ion counter based on silicon sensors

2. Integration of the counter with a TDC (Cern picoTDC) to measure the time of arrival of beam particles

1. Proton and carbon ion counter based on silicon sensors

2. Integration of the counter with a TDC (Cern picoTDC) to measure the time of arrival of beam particles

• From Integrated Charge with Gas Ionization Chambers to Number of Particles with Silicon Detectors

- Sensitivity $\rightarrow 10^4$ protons
- Collection times $\rightarrow ~ \sim 100 \ \mu s$
- Time resolution \rightarrow poor

Not suitable for scanning modalities with timing of the order of tens of microseconds New beam monitors based on single particle counting for Particle Therapy

• From Integrated Charge with Gas Ionization Chambers to Number of Particles with Silicon Detectors

Gas detector (ionization chambers, MWPC, ...)

- Sensitivity $\rightarrow 10^4 \text{ protons}$ —
- Collection times $\rightarrow \sim 100 \ \mu s$ —
- Time resolution \rightarrow poor

Not suitable for scanning modalities with timing of the order of tens of microseconds Thin Silicon Detectors (Active Thickness ~ 50 µm)

- Single particle
- $\sim ns$
- $\sim 50 \text{ ps}$

Single particle discrimination \rightarrow Direct counting # particles at clinical fluence rate (~10⁹ cm⁻² s⁻¹) New beam monitors based on single particle counting for Particle Therapy

• From Integrated Charge with Gas Ionization Chambers to Number of Particles with Silicon Detectors

Gas detector (ionization chambers, MWPC, ...)

- Sensitivity $\rightarrow 10^4 \text{ protons}$ –
- Collection times $\rightarrow \sim 100 \ \mu s$ –
- Time resolution \rightarrow poor

Not suitable for scanning modalities with timing of the order of tens of microseconds Thin Silicon Detectors (Active Thickness ~ 50 µm)

Single particle

 $\sim ns$

 $\sim 50 \text{ ps}$

Single particle discrimination \rightarrow Direct counting # particles at clinical fluence rate (~10⁹ cm⁻² s⁻¹)

Main issue:

- Signal pile-up
 - fast sensors & segmentation
 - \succ fast readout electronics

Sensors and readout electronics

- Sensor for **protons**:
 - ≻ Low Gain Avalanche Detectors segmented in strips
 ≻ Thickness ~ 50 µm
 - $\succ {\rm Internal \ gain} \sim 10$
- Sensor for carbon ions

 $\succ Strip$ segmented diode sensors $\succ Thickness \sim 60~\mu m$

Sensors and readout electronics

- Sensor for **protons**:
 - ≻ Low Gain Avalanche Detectors segmented in strips
 ≻ Thickness ~ 50 µm
 - $\succ {\rm Internal~gain} \sim 10$
- Sensor for carbon ions

 \succ Strip segmented diode sensors \succ Thickness $\sim 60~\mu m$

ABACUS chip

 $\frac{\text{Fausti et Al,}}{10.1016/\text{j.nima.}2020.164666}$

- 110 nm CMOS technology
- 24 channels

- Adjustable threshold voltage for each channel
- Dead time < 10 ns
- 100 % efficiency up to input f = 160 MHz

Particle counter prototype: ESA-ABACUS

• 6 ABACUS chips reading out 144 strips of the sensor in the middle

2.7 cm

Strips with: Width $\rightarrow 114 \ \mu m$ Length $\rightarrow 26214 \ \mu m$ Pitch $\rightarrow 180 \ \mu m$ Active thickness $\rightarrow \sim 50 \ \mu m$ Capacitance $\rightarrow \sim 7 \ pF$

Data acquisition system

→ ABACUS digital outputs → Digital signals to set thresholds On FPGA boards a dedicated firmware implements a counter for each of the 48 channels to store the number of 0-1 transitions. A LabVIEW program is used for

- reading counters and time stamps from FPGA boards
- saving data for offline analysis
- setting threshold voltages

Beam test in CNAO with protons and carbon ions

- Beam test in CNAO, Pavia
 (Italy)
 - ESA-ABACUS-1 for protons
 - ESA-ABACUS-2 for carbon ions
- Runs with different energies
 - 60 230 MeV (protons)
 - 115 400 MeV/u (carbon ions)
- Energies corresponding to 2-5 MIPs
- Different beam fluence rates:
 - 20, 50, 100 % of *clinical* fluence rate of 2x10⁹ protons/(cm²s) and 5x10⁷ carbon ions/(cm²s)

Detected carbon ions in one strip

9/22

Detected carbon ions in one strip

Carbon ions - beam projection on y axis

- 3 beam projections along the axis perpendicular to the strips for 3 different energies
- Non gaussian tails

- Comparison with Gafchromic films
- Measured FWHM vs energy shows expected trend

Carbon ions - Counting efficiency vs Energy

Protons - beam projection on y axis

220

Strip pitch = $180 \ \mu m$

Expected FWHM at isocenter from

Mirandola et Al 10.1118/1.4928397

- under study being the selection of the thresholds much more critical
- **Curves** \rightarrow Gaussian fit

12/22

Protons - Counting efficiency vs Energy

1. Proton and carbon ion counter based on silicon sensors

2. Integration of the counter with a TDC (CERN picoTDC) to measure the time of arrival of beam particles

• Range verification with prompt gamma timing

• Range verification with prompt gamma timing

• Range verification with prompt gamma timing

t(ns)

• *Range verification* with prompt gamma timing

Ferrero et Al 10.3389/fphy.2022.971767

Recostruction of the particle range

Pennazio, F, et al. "Proton therapy monitoring: Spatiotemporal emission reconstruction with prompt gamma timing and implementation with PET detectors." PMB 67.6 (2022): 065005.

16/22

Prompt gamma timing measurement at subclinical rate with carbon ions

- Detector for primaries: 8-strip silicon sensor
- Detector for promp gamma: LaBr3(Ce) crystal (diameter = 3.81 cm, height = 3.81 cm) + SiPM matrix (2.4x2.4 cm²)
- Signal read-out made with **DT5742 digitizer** by CAEN
- Limitations of DAQ:
 - Dead time (efficiency 0.04 %)
 - Limited number of channels

Integration ESA-ABACUS + picoTDC

- **PicoTDC** developed at **CERN**:
 - \succ based on Delay Locked Loop with 64 delay elements
 - \succ Bin size = 3.05 ps
 - \succ Dynamic range = 205 µs
 - \succ 64 channels
 - > LVDS18 input signals

 $\begin{array}{l} \text{maximum trigger} \\ \text{latency} = 51 \text{ us} = \\ 2048 \text{ clock cycles} \end{array}$

Particle tracking integration with range verification system

Measurements of crossing times of carbon ions

Distributions of difference of crossing times - $1 \operatorname{strip}(1)$

Distributions of difference of crossing times - $1 \operatorname{strip}(1)$

Distributions of difference of crossing times - $1 \operatorname{strip}(1)$

- ESA-ABACUS board (counter)

 - Inefficiency due to pile-up was observed
 - The lower S/R ratio observed at the largest proton energies requires more investigation
 - Better uniformity expected in new ABACUS production
- ESA-ABACUS board + picoTDC
 - Measured beam frequency components in agreement with accelerator RF values
 - Results indicate that thin silicon detectors, custom readout electronics and the picoTDC allow for a full 4D tracking at the high rates of clinical beams
- First PGT measurements using the picoTDC were performed in April and the analysis is ongoing

That's all Folks

Backup

Different threshold scans injecting a constant charge into CSA with a pulse generator

Example of pedestal and gain distributions: A

Iterating the same procedure for all channels. the following histograms are filled

ESA-ABACUS N4

INFN

Optimization of pedestals with internal DAC

Example for 2 chips

- Pedestal distributions measured for each chip for both internal DAC = 63 and internal DAC = 0 to make the *pedestal equalization*
- The **green line** is the median of the pedestals

Signal amplitude distributions

- Discriminating signal from noise
- Threshold scans with different beam energies
- Signal Amplitude distribution \rightarrow Landau * Gaussian

Convolution fit funtion* (red curves):

- MPV
- Width (scale parameter for the Landau)
- Area
- Gaussian Sigma

*Cartiglia et Al

Signal amplitude distributions

- Discriminating signal from noise
- Threshold scans with different beam energies
- Signal Amplitude distribution → Landau * Gaussian

Convolution fit funtion* (red curves):

- MPV
- Width (scale parameter for the Landau)
- Area
- Gaussian Sigma

*Cartiglia et Al

Signal amplitude distributions

- Discriminating signal from noise
- Threshold scans with different beam energies
- Signal Amplitude distribution → Landau * Gaussian

Convolution fit funtion* (red curves):

- MPV
- Width (scale parameter for the Landau)
- Area
- Gaussian Sigma

*Cartiglia et Al

Selection of the thresholds

Peaks of
$$\Delta t$$
 distributions vs time - E = 398.84 MeV/u

$$--- f(t) = A e^{-\frac{t}{\tau}}$$

•
$$A = constant$$

If the number of particles in each bunch is Possonian distributed, the peaks in Δt distributions are expected to decrease exponentially

Carbon ions - beam projection on x axis

Calculation of the charge produced in a strip for carbon ions

- Protons @ 62 MeV \rightarrow expected charge in 60 μm = 3.629 fC \rightarrow with gain = 10 \rightarrow 36.29 fC
- Protons @ 226 MeV \rightarrow expected charge in $60~\mu m = 1.461~fC \rightarrow$ with gain = $10 \rightarrow 14.61~fC$
- Let's compute the charge produced by one 120~MeV/u~carbon ion in one strip
- Thickness $\Delta \mathbf{x} = 60 \ \mu \mathbf{m}$, silicon density $\boldsymbol{\rho} = 2.329 \ \mathrm{g/cm^3}$, mean ionization energy in silicon $\mathbf{w} = 3.6 \ \mathrm{eV/pair}$ with the same $\boldsymbol{\beta}$ of the carbon • $\frac{dE}{\rho dx}\Big|_{el}^{(carbon)} = 36 \cdot \frac{dE}{\rho dx}\Big|_{el}^{(proton)} = 36 \cdot 5.118 \frac{MeV \ cm^2}{g} = 184.2 \frac{Me \ cmpatible \ with}{g}$ The MPV is approximately 70 % of the mean value calcultated with Bethe-Bloch $\frac{dE}{\rho dx}\Big|_{el}^{(carbon)} \Delta x$ • $Charge = 0.7 \frac{\rho \ \frac{dE}{\rho dx}\Big|_{el}^{(carbon)}}{w} e \cong 80 \ fC$ • $Charge = 0.7 \frac{\rho \ \frac{dE}{\rho dx}\Big|_{el}^{(carbon)} \Delta x}{w}$
- The amplifier of ABACUS is expected to be linear between 4 and 120 fC !

For pile-up correction algorithm

Two-channel Time Combination (TC) method

The count-loss correction is based on the comparison of the total time of the individual logic signals from the two channels with the time of their logical AND combination.

doi: 10.1016/j.nima. 2022.167195

Development of a novel beam monitoring system for single particle 4D tracking (position and time) integrating a range verification system based on Prompt Gamma Timing (PGT)

INFN GRV Call involving INFN-MI, INFN-GE, CERN, CNAO

- Particles up to a rigidity of 6.6 Tm (430 MeV/u carbon ions)
- 14 m long, ~50 tons weight
- 4 T curved superconducting dipoles
- Superconducting spool piece quadrupoles
- Downstream scanning magnet system
- Dose Delivery and Range Verification Systems for adaptive cancer treatments