

First results on the performance of the upgraded LHCb RICH detectors 16th Pisa Meeting on Advanced Detectors

Edoardo Franzoso

on behalf of the LHCb RICH Group

Outline

- Overview of the LHCb Upgrade
- The Particle Identification in LHCb
- The RICH system Upgrade
- Detector tuning and optimization
- Performance evaluation
- Performance Online Monitoring
- Conclusions

Overview of the LHCb Upgrade

- Five-fold increase in the instantaneous luminosity and pile-up
- Removal of the hardware level trigger
 - Increase in hadrons selection efficiency by factor ~2
- Readout of all subsystems at 40 MHz
 - full-software trigger architecture
 - First=level Trigger reconstruction on GPUs

Charged Hadron Particle Identification (PID)

Hadron identification is a key ingredient in b-physics & hadron spectroscopy

- **PID information for a charged track** is encoded in a DLL variable
 - Log likelihood difference between a particle hypothesis and the baseline hypothesis (pion)
- Combinatorial **background reduction**
- Distinguishing between final states with the same topology

[LHCb, JHEP 10 (2012) 37]

4

Evaluation of the RICH performance

Main figure of merit to assess the detector performance is the Cherenkov angle resolution per single photon $\rightarrow \sigma_{\rm C}$

$$\Deltaeta/eta=\Delta heta_C an heta_C, ext{ where } \Delta heta_C=\sigma_c/\sqrt{N_{ph}+C_{ ext{tracking,alignment ,...}}}$$

Uncertainty contributions

- **emission point error** due to the unknown emission point of the Cherenkov light
 - reduced by **optimizing the optics** of the mirror system to focus the Cherenkov light
- **pixel size error** : choose photon detectors with optimal spatial granularity
- chromatic error due to the radiator dispersion
 - different Cherenkov angles from the same track
 - Avoid large variations of the refractive index with the Cherenkov photons energy

- Maximize photon yield (N_{ph}) per track
- Minimize background counts

The RICH Detector System (2008-2018)

- Radiator contained in gas enclosure
- Optical system composed by spherical and flat mirrors
- Opto-electronics chain
 - position sensitive photon detectors
 - Hybrid Photon Detectors (HPDs) with encapsulate 1MHz readout front-end
 - electronics outside the acceptance

RICH System Upgrade

Optics & mechanics

- Peak occupancy under 30% → mantain PID performance
- **Redesigned RICH 1 optics** to magnify the ring and spread photons over a larger area
- New mechanical support for upgraded optoelectronics chain

Poster by Federica Borgato Upgrade of the LHCb RICH detectors and characterisation of the new opto-electronics chain

Opto-electronics chain

- New Front-End (FE) Electronics and DAQ system to deal with 40 MHz readout rate
 - o CLARO8 ASIC [M. Baszczyk et al 2017 JINST 12 P08019]
 - FPGA-based Digital Board
 - GigaBit Transceiver chip for data transmission
- HPDs replaced by Multianode Photomultiplier Tubes (MaPMTs)

7

RICH System in Run 3

The RICH detector system is working successfully during LHCb Run3

- November 2021 \rightarrow operating RICH 2 during LHC pilot beam
- May 2022 \rightarrow first high energy beam on 5 July
- Collecting data efficiently since

One side of **RICH 1** in LHCb cavern

One side of **RICH 2** in Meyrin

Working point evaluation and Optimization

Time Alignment

- Coarse time alignment in the 25 ns of the bunch crossing ID
- Fine time alignment

• Apply a **signal latching scheme** based on gating in few ns to **maximize detection efficiency** while **reducing out-of-time background**

- Identify the rising edge of the digitized signal (minimum gating is 3.125 ns)
- In practice more than one minislot (3.125 ns) is required \rightarrow Claro chip time resolution of $\sim 3 4$ ns is the bottleneck

RICH time aligned

- The time alignment procedure can be performed as a routine operation
- Fine time alignment within 6.25 ns achieved
- RICH detectors able to operate at 40 MHz, as by LHCb Upgrade design, and with further background suppression

Rich1 Bunch ID Vs global bit ID

Occupancy in real data

- Occupancy in data at design pile-up
- Values below 30% as required to guarantee the excellent PID performance

Panel Alignment

- Translating/rotating panels
- Small movements in X-Y of the panels to minimize the Cherenkov angle resolution

0.706

0.702

0.700

0.699

0.695

0.692

0.681

0.677

0.674

0.704

0.701

0.697

0.694

0.690

0.686 💆

0.683

0.679

0.676

0.672

0.688 🖇

ਚ 0.684

Mirror Alignment

RICH mirror alignment is performed in a real-time task

- Look at the difference of each detected photon's reconstructed Cherenkov angle and its expected Cherenkov angle in bins of the azimuthal angle
- Fit the $\Delta \theta_c$ distribution and correct for deviations of its mean value from zero in each ϕ bin

Single Photon Cherenkov angle resolution

- One of the main figure of merit to evaluate the performance, it requires:
 - **High momentum tracks** reconstructed \rightarrow dependence on tracking quality Ο
 - Software **spatial alignment** → mirrors and panels Ο

 $\times 10^{-3}$

Online Monitoring

- Implemented online monitoring of figure-of-merit variables
- Real-time feedback of the performance of the detector
- Useful to promptly detect issues and optimize data-taking

We have independent variables available to understand the activity of the detector:

- Single Photon Cherenkov angle resolution
- post-reconstruction photon yield per track
- **Experiment control system variables** independent from the DAQ

PID efficiency

- Charged hadron separation performance is studied looking at **pure samples of pion, kaons and protons** from **control samples**
- Selection based on kinematic requirements only

PID efficiency

Tag-and-probe method

- Look at efficiency and mis-ID efficiency by varying the PID cut
- Compare high-pile up events in Run 3 with Run 2 values (pile-up \sim 1)
- **Design goal** → retain excellent PID performance of Run 2

Fully **characterize the PID performance** in bin of momentum, pseudorapidity of the tracks and occupancy of the events

Similar studies as a function of the gating are foreseen

Conclusions

- The LHCb RICH system is a unique PID system: PID over unprecedented large momentum range with extremely challenging peak occupancy
- First years of data-taking during Run 3 show an excellent PID performance, better than the precedent RICH detector system
 - $\circ~$ Steadily approaching to the designed values of Cherenkov angle resolution
- The RICH system collected data efficiently since 2022
- Very promising performance anticipates exciting results from LHCb Physics programme in RUN3

5720 hits in RICH1

High multiplicity event Display

Spares

New Photomultipliers and Readout

To achieve the required readout rate, a new electronic (CLARO chip) has been developed and coupled with Multi-Anode PhotoMultiplier Tubes (MaPMTs), instead of the Hybrid Photon Detectors used for previous LHC runs

MaPMTs

- R-type (1") and H-type(2")
- 64 pixels each
- **High quantum efficiency** (QE) super-bialkali photocathode
 - lower chromatic error
- Gain $\sim 2 \cdot 10^6$ at 1 kV with 1:3 pixel gain spread for a single MaPMT
- Dark count rate (DCR) < 1 kHz for each pixel

MaPMTs and readout electronics are coupled in a compact and fully functional unit called Elementary Cell (EC)

CLARO ASIC

8 channel amplifier/discriminator

- 0.35 μ m AMS CMOS technology
- Recovery time < 25 ns
- Adjustable threshold and attenuation for each channel
- Triple modular redundancy protection
- Radiation- hard by design

The Photon Detector Module

Front-end digital board:

- capture CLARO outputs
- synchronize to LHC clock
- data algorithm, format and transmission

PDMDB: motherboard with FPGAs and power distribution

• plugins for controls and data transmission, DTM and TCM

EC+PDMDB form the logical unit called the Photon Detector Module (PDM)

• share common LV and HV distribution

Modular design to facilitate maintenance

Novec circulated at 16°C ensures MaPMT temperature at 25°C

RICH Reconstruction

