

Brookhaven

National Laboratory

MPGD Trackers in the ePIC Detector @ the EIC

Kondo Gnanvo

On behalf of the ePIC collaboration

Thomas Jefferson National Accelerator facility (Jefferson Lab)

Overview of ePIC Tracking Detector ePIC Experiment @ the Electron Ion Collider (EIC) Vertex detector \rightarrow Identify primary and secondary vertices, For e-N collisions at the EIC: ePIC Detector@ EIC Why ePIC Experiment ? ~70% polarized beams: e, p, d/³He Low material budget: 0.05% X/X₀ per layer; Electrons mainly interacts with Electron beam (5-18 GeV) electroweak interaction using Deep High spatial resolution: 20 mm pitch CMOS Monolithic Active Pixel Sensor Inelastic Scattering (DIS): high precision $\sqrt{s_{ep}} = 20-140 \text{ GeV}$ (Variable) EIC Central tracker \rightarrow Measure charged track momenta Polarized protons and light ions to study Lep ~10³³-10³⁴ cm⁻²sec⁻¹ ~100-1000 spin/structure physics times higher than HERA using crab MAPS – tracking layers in combination with micro pattern gas detectors cavities Collider to achieve wide x and Q² range MPGD: µRWELL and Micromegas technologies to probe extreme gluon density regime For e-A collisions at the EIC: Wide range of nuclei µRWELL-ECT **µRWELL-ECT** µRWELL-BOT CyMBaL Wide x and Q² range Variable center-of-mass energy Current polarized DIS data: Luminosity per nucleon same as ep o CERN △ DESY ♦ JLab □ SLAC collisions Current polarized BNL-RHIC pp data Q^2 (GeV²) olenoid coil ● PHENIX π⁰ ▲ STAR 1-jet $Q^2 = s x y$ MPDG & MAPS trackers ePIC (electron-Proton/Ion Collider) experiment AC-LGAD at Brookhaven National Laboratory (BNL), USA ToF, DIRC, e/m calorimeters Barrel RICH detectors dilute region More than one interaction region DGLAP (: 10⁻³ X ^{10⁻²} Detector II (not yet scheduled in time) AC-LGAD hadronic calorimeters **SVT** Endcaps **SVT** Barrels SVT **SVT** Endcaps Endcap Probe resolution (O^2)

µRWELL-BOT: µRWELL Barrel Outer Tracker

ePIC Barrel Outer Tracker (µRWELL-BOT)

Tracking layer close to hpDIRC detector

Thin-gap GEM-µRWELL Hybrid Detector

Thin-gap GEM-µRWELL detector concept

Small drift gap ~ 1mm \rightarrow better spatial resolution, timing resolution, smaller E×B effect

- improved and angular & space point resolution for the DIRC
- ✤ Acceptance matching with hpDIRC bars
- ✤ Spatial resolution: better than150 µm on average over the full eta range in barrel region

µRWELL-BOT specifications

- $L = 340 \text{ cm} (-165 \text{ cm} \le Z \le 175 \text{ cm}), R = 72.5 \text{ cm}$
- ✤ Thin-gap & hybrid amplification (GEM & µRWELL)
- ♦ 2D U/V strip readout → spatial resolution = $150 \,\mu m$
- ✤ Fast timing layer ~ 10 ns
- **\clubsuit** Radiation length < 2% in active area

ePIC µRWELL Barrel Outer Tracker in front of hpDIRC in the central detector

- hybrid amplification MPGD:
 - GEM foil for preamplification and µRWELL for main amplification
 - Allow large detector gain and stable operating HV
- Readout layer: 3-layer capacitive-sharing U-V strip readout
 - Achieve excellent spatial resolution with thin gap detector

CyMBAL: Cylindrical Micromegas Barrel Inner Layer

Cylindrical Micromegas Barrel Inner Layer: (CyMBaL)

- ✤ The inner MPGD layer wraps around the SVT
- Provides additional hit points for pattern recognition

Keeping zones:

- **♦** Z = [-105, 135.5] cm
- R = [50, 55]cm

Upgrade CLAS12 Micromegas technology from $1D \rightarrow 2D$ readout

µRWELL-ECT: µRWELL End Cap Trackers

ePIC End Cap Tracker (µRWELL-ECT)

- Provides additional hit points for pattern recognition
- ★ Two discs in each end cap: hadron (HD) and electron (LD)
- ✤ Time resolution 10 ns time to provide tracking timing
- ♦ Low material budget: ~ 2% X0

Spatial resolution: 150 μ m or better

Component	Z (cm)	Inner Active Reg. Radius (cm)	<i>θ</i> min (deg)	∣η∣ max	Outer Active Reg. Radius (cm)	<i>θ</i> max	η m
HD MPGD 2	162	10.5	3.35	3.43	45	15.52	1.99
HD MPGD 1	148	10.5	4.06	3.34	45	16.91	1.9
LD MPGD 1	-111	6	3.09	3.61	45	22.07	1.63
LD MPGD 2	-121	6	2.83	3.69	45	20.40	1.72

Some numbers:

- $32 \text{ modules} : 8 \text{ modules in phi} \times 4 \text{ modules in z}$
- ✤ 1024 readout channels/module
- ✤ 32K readout channels

CyMBaL module Dimensions:

- Size: $65 \times 46 \text{ cm}^2$ with active area: $59 \times 44 \text{ cm}^2$
- r/o strips: ~1 mm pitch in both directions
- ✤ Readout strips per module: 1024
- ♦ 32 channels per connector \rightarrow 32 connectors

µRWELL-ECT disc: Hybrid amplification (GEM & µRWELL)

µRWELL-ECT disc design

<u>µRWELL-ECT strip readout choice:</u>

- (X, Y) readout is preferred vs ($\mathbf{R}, \boldsymbol{\varphi}$)
- 500 μ m pitch \rightarrow better than 150 μ m intrinsic position resolution

Conclusion

MPGD trackers in ePIC detector @ the EIC

- Pattern recognition layers in support to the Silicon trackers in the barrel and end cap central tracker \rightarrow spatial resolution < 150 µm and timing resolution ~10 ns
- ✤ Three MPGD subsystems: Barrel Inner Tracker (CyMBaL), Barrel Outer Tracker (µRWELL-BOT) and end cap discs (µRWELL-ECTs)
- * Two MPGD technologies: Cylindrical Micromegas a la CLAS12 MVT for inner barrel ; Planar GEM-μRWELL detectors (novel hybrid MPGD approach) for outer barrel & end cap discs
- Intense ongoing R&D effort to achieve the performance requirements \rightarrow large consortium of international universities and labs involved

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contracts DE-AC05-06OR23177.