

Thin silicon sensors for extreme fluences: a doping compensation strategy

A. Morozzi, INFN Perugia

V. Sola, G. Paternoster, L. Anderlini, R. Arcidiacono, M. Barozzi, G. Borghi, M. Boscardin, N. Cartiglia, M. Centis Vignali, M. Costa, T. Croci, M. Ferrero, F. Ficorella, A. Fondacci, S. Giordanengo, O. Hammad Ali, C. Hanna, L. Lanteri, L. Menzio, F. Moscatelli, D. Passeri, N. Pastrone, F. Siviero, R.S. White

The Extreme Fluence Challenge

Silicon detectors have been enabling technology for discoveries on particle physics at colliders

Concurrent Interactions

A. Morozzi et al.

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

The Extreme Fluence Challenge

Silicon detectors have been enabling technology for discoveries on particle physics at colliders

Present silicon frontier

- \vartriangleright Precise tracking down to ~ 10 $\mu m \rightarrow$ 1 fC up to 2.10^{16}/cm^2
- ▷ Precise timing down to ~ 30 ps \rightarrow 5 fC up to 3.10¹⁵/cm²

10000

The Extreme Fluence Challenge

Silicon detectors have been enabling technology for discoveries on particle physics at colliders

Present silicon frontier

- \vartriangleright Precise tracking down to ~ 10 $\mu m \rightarrow$ 1 fC up to 2.10^{16}/cm^2
- ▷ Precise timing down to ~ 30 ps \rightarrow 5 fC up to 3.10¹⁵/cm²

 \rightarrow CompleX will enable 4D tracking with planar silicon sensors up to the fluence of $5 \cdot 10^{17} n_{ea}/cm^2$

Concurrent Interactions

Silicon modeling at Very High Fluences

Models of the radiation damage in silicon are validated till about $10^{16}/cm^2$

A mismatch between data and the predictions arises at very high fluences

- Dark current increase is smaller than expected
- ➤ Charge collection efficiency is higher than predicted
- Increase of the acceptor states slows
- \rightarrow Hints of saturation of the radiation damage effects

Accurate modeling of silicon damage and sensor behavior at very high fluences is necessary to design the next generation of silicon detectors

TCAD simulation of LGAD devices

Physical models

- Generation/Recombination rate
 - Shockley-Read-Hall, Band-To-Band Tunneling, Auger
 - Avalanche Generation => impact ionization models, van Overstraeten-de Man, Okuto-Crowell, Massey^[1], UniBo
- Fermi-Dirac statistics
- Carriers mobility variation doping and field-dependent
- Physical parameters
 - e-/h+ recombination lifetime
- Radiation damage models: "PerugiaModDoping"
- "New University of Perugia model"
 - Combined surface and bulk
 TCAD damage modeling scheme
 - Traps generation mechanism
- Acceptor removal mechanism $= N_{GL}(\phi) = N_A(0)e^{-c\phi}$
 - where
 - Gain Layer (GL), c removal rate (Torino parameterization)
- Acceptor creation

 $N_{A,bulk} = \begin{cases} N_{A,bulk}(0) + g_c \phi, & 0 < \phi < 3E15 \ n_{eq}/cm^2 \\ 4.17E13 \cdot \ln(\phi) - 1.41E15, & \phi > 3E15 \ n_{eq}/cm^2 \end{cases}$ where $g_c = 0.0237 \ \text{cm}^{-1}$ (Torino acceptor creation)

 M. Mandurrino et al., https://doi.org/10.1016/j.nima.2018.11.121.

 D. Passeri, AIDA2020 report, CERN Document Server.
 V. Sola et al., https://doi.org/10.1016/j.nima.2018.07.060.

Surface damage (+ Q_{OX})

	Туре	Energy (eV)	Band widt (eV)	h	Conc. (cm⁻²)			Acceptor Acceptor	CB • 39
	Acceptor	$E_C \le E_T \le E_C$ -0.56	0.56		D _{IT} = D	9 _{IT} (Φ)	0.6 eV	v Si E	Donor VB
	Donor	$E_V \le E_T \le E_V + 0.6$	0.60		$D_{IT} = D$	ο _{ιτ} (Φ)		Bulk damage	
א מ	Donor \$ 0.2	Туре	E	nergy (eV)	η (cm ⁻	^{.1})	σ _n (cm²)	σ _h (cm²)	
9-1-12				Ec	- 0.23	0.00	96	2.3×10 ⁻¹⁴	2.3×10 ⁻¹⁵
5 ↓		VB	Acceptor	Ec	- 0.42	1.6	5	1×10 ⁻¹⁵	1×10 ⁻¹⁴
1.12 50.	<u>21</u> .		Acceptor	Ec	- 0.46	0.9		7×10 ⁻¹⁴	7×10 ⁻¹³

A. Morozzi et al.

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

Silicon modeling at Very High Fluences

Models of the radiation damage in silicon are validated till about 10¹⁶/cm²

A mismatch between data and the predictions arises at very high fluences

- Dark current increase is smaller than expected
- ➤ Charge collection efficiency is higher than predicted
- Increase of the acceptor states slows
- \rightarrow Hints of saturation of the radiation damage effects

The ingredients to overcome the present limits above $10^{16} n_{eq}/cm^2$ are:

- ♦ 1. saturation of the radiation damage effects above $5 \cdot 10^{15} n_{eq}/cm^2$
- ♦ 2. the use of thin active substrates (15 45 μ m) with internal gain
- ♣ 3. extension of the charge carrier multiplication up to $10^{17} n_{eq}/cm^2 \rightarrow$ Compensated LGADs

Planar Silicon Sensors for eXtreme Fluences

Planar Silicon Sensors for eXtreme Fluences

Compensated LGADs for eXtreme Fluences

Doping Profile – Standard LGAD

Compensated LGADs for eXtreme Fluences

Compensated LGADs for eXtreme Fluences

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

Compensation – Doping Evolution with Fluence

A. Morozzi et al.

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

First Compensated LGADs – EXFLU1

First production of compensated LGADs EXFLU1 batch released end of 2022 by FBK.

Further R&D from EXFLU1 batch

Optimization studies of GR protection structures

- Extensive test campaign on the different GR structures contained in the "EXFLU1" R&D batch (FBK).
- Ad-hoc TCAD modelling of the different GR design strategies, accounting for the radiation-induced damage effects.

EXFLU1 thin sensors with gain at high fluence

□ Characterizationin terms of I-V, C-V, Gain-V up to 2.5 x 10¹⁵ n_{eo}/cm²

after irradiation at fluences $\Phi = 1 \times 10^{14}$ to 5×10^{15} n_{eg}/cm² Thickness / µm C dose Diffusion Bulk p⁺ dose 45 1.14 1.0 CBL n type* 30 1.12 1.0 CBL high p 20 0.96 1.0 CBL low p 15 0.94 1.0 CBL low p

POSTER R. WHITE Solid State Detectors

> Tuesday afternoon Wednesday morning

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

[□] Planar p-type bulk of thickness 45, 30, 20, and 15 µm, with a 1 μ m-thick p+ (B, Ga) gain implant

Compensated Gain Layer Design – Split Table

Active thickness 30 μm

Wafer #	Thickness	p+ dose	n+ dose	C dose
6	30	2 a	1	
7	30	2 b	1	
8	30	2 b	1	
9	30	2 c	1	
10	30	3 a	2	
11	30	3 b	2	
12	30	3 b	2	
13	30	3 b	2	1.0
14	30	3 c	2	
15	30	5 a	4	

3 different combinations of $p^+ - n^+$ doping: 2 - 1, 3 - 2, 5 - 4

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

[a < b < c]

Compensation from Simulation

Process simulations of Boron (p⁺) and Phosphorus (n⁺) implantation and activation reveal the different shape of the two profiles

→ The simulation of the electrostatic behaviour shows that it is possible to reach similar multiplication for different initial concentrations of p⁺ and n⁺ dopants

Simulation

A. Morozzi et al.

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

Secondary Ion Mass Spectroscopy – W15

- ▷ Boron peak is shallower than phosphorus
- ▷ Boron peak is lower than predicted from simulation

IR Laser Stimulus on Compensated LGAD

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi

 \rightarrow Not trivial to operate compensated LGAD sensors

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

 $\Phi = 0$

Neutron Irradiation of Compensated LGADs

Compensated LGAD sensors have been irradiated with neutrons at the JSI TRIGA Reactor Irradiation Facility (Ljubljana)

> Irradiation fluences from 1E14 to 5E15 n_{eq}/cm²

Fluence uncertainty ± 5%

A. Morozzi et al.

IR Laser Stimulus on Compensated LGAD

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi **Room temperature**

$$Gain = \frac{Q_{LGAD}}{< Q_{PiN}^{No \;Gain} >}$$

→ Good gain behavior of the compensated LGAD sensors after irradiation

→ Even in compensated LGADs, the usage of carbon mitigates the acceptor removal

A. Morozzi et al.

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

β Particles on Compensated LGAD

β Setup

A. Morozzi et al.

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

Compensated LGAD – State-of-the-Art

Lesson from the first batch of compensated LGAD sensors:

- ▷ Difficult to control the shape and the peak concentration of two different elements
 - \rightarrow Necessary to carefully tune all the process parameters
- After irradiation, possible to successfully operate compensated LGAD sensors
 → Good gain and timing performances after irradiation
- ▷ Co-implantation of Carbon in the same volume of Boron and Phosphorus
 - \rightarrow Same effect as in standard LGAD, a reduction of a factor of ~ 3 of the Acceptor removal
- ▷ Simulation effort in progress to replicate I-V, C-V, and gain behavior after irradiation
 - \rightarrow Possible to extract Acceptor and Donor removal by comparing data and simulations
 - \rightarrow Reliable TCAD highly predictive model for the GR structures to improve the V_{BD} of LGADs

Compensated LGADs represent the sensor technology for the extreme fluences

We acknowledge the following funding agencies and collaborations:

- ▷ INFN CSN5
- ⊳ RD50, CERN
- ▷ AIDAinnova, WP13
- ▷ Compagnia di San Paolo
- ▷ Ministero della Ricerca, Italia, PRIN 2022, progetto 2022RK39RF ComonSens

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No.101004761 (AidaInnova) and No.101057511 (EURO-LABS)

An ERC Consolidator Grant awarded to further develop compensated LGAD sensors

Doping Compensation in Thin Silicon Sensors: the pathway to Extreme Radiation Environments

CompleX

Co-funded by the European Union (ERC, CompleX, 101124288). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

First design innovation: low gain avalanche diode (LGAD)

The LGAD sensors, as proposed and first manufactured by CNM

(National Center for Micro-electronics, Barcelona):

High field obtained by adding an extra doping layer

 $E \sim 300 \, \text{kV/cm}$, closed to breakdown voltage

The low-gain mechanism, obtained with a moderately doped p-implant, is the defining feature of the design.

Low gain is the key ingredient to good temporal resolution

First compensated LGAD sensors have been released by FBK in the framework of the EXFLU1 batch

Other R&D paths pursued by the EXFLU1 batch to extend the radiation tolerance of the LGAD sensors:

- ▷ new guard ring design
- ▷ decrease of the acceptor removal carbon shield
- ▷ thin substrates (15–45 μ m)

Design and preparatory studies have been performed in collaboration with the Perugia group

 \rightarrow The EXFLU1 wafers exited the FBK clean room at the end of 2022

[V. Sola, TREDI 2023, Trento]

Towards the eXtreme Fluences – CompleX

Planar silicon sensors can operate up to 10¹⁶/cm²

Signals from planar silicon sensors become too small

- \succ Non-uniformities in the electric field
- \succ Impossible to fully deplete the sensors
- Collected charge independent from thickness

CompleX will design a new generation of silicon sensors

- ▶ exploit saturation of the radiation damage
- ightarrow use thin substrates (20 40 μ m)

A. Morozzi et al.

▷ use internal gain to enhance the signal

 \rightarrow CompleX will develop a new generation of planar silicon sensors with gain to operate in extreme fluence environments

12

200 V

300 V

▼

[doi: 10.1088/1748-0221/9/05/C05023]

I-V from Compensated LGAD – Irradiated

A. Morozzi et al.

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

SIMS Profile & I-V – 5–4

 \rightarrow The simulated I-V reproduces the trend of the measured I-V from W15

Gain Removal Mechanism in LGADs

The acceptor removal mechanism deactivates the p⁺-doping of the **gain implant** with irradiation as

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient

 c_A depends on the initial acceptor density, p⁺(0), and on the defect engineering of the gain layer atoms

 $\Phi_0 = 1/c_A \sim$ the fluence at which multiplication power of the gain implant reaches unity

Towards a Radiation Resistant Design of LGADs

16th Pisa Meeting on Advanced Detectos – La BiodolaIsola d'Elba, 28 May 2024

Sensor design the eXtreme Fluences

Planar silicon sensors can operate up to 10¹⁶/cm²

Signals from planar silicon sensors become too small

- ➤ Non-uniformities in the electric field
- Impossible to fully deplete the sensors
- Collected charge independent from thickness

[doi: 10.1088/1748-0221/9/05/C05023]

<u>The ingredients to overcome the present limits above $10^{16} n_{eq}/cm^2$ are:</u>

- ♦ 1. saturation of the radiation damage effects above $5 \cdot 10^{15} n_{eq}/cm^2$
- ♦ 2. the use of thin active substrates (15 45 μ m) with internal gain
- ♣ 3. extension of the charge carrier multiplication up to $10^{17} n_{eq}/cm^2 \rightarrow$ Compensated LGADs

Saturation

At fluences above $5 \cdot 10^{15} \text{ cm}^{-2} \rightarrow \text{Saturation of radiation effects observed}$

Silicon detectors irradiated at fluences $10^{16} - 10^{17} n_{eq}/cm^2$ do not behave as expected \rightarrow They behave better