

A New Hydrogen-Filled Cherenkov Detector for Kaon Tagging at the NA62 Experiment at CERN

16th Pisa Meeting on Advanced Detectors La Biodola, Isola d'Elba

Summary of JINST 19 (2024) 05, P05005

Chandler Kenworthy, on behalf of the NA62 Collaboration ckenwort@cern.ch

UNIVERSITY^{of} BIRMINGHAM

NA62 at CERN

- Fixed target experiment in the CERN North Area (JINST 12.05 (2017), P05025).
- Goal: measure very-rare $\mathscr{B}(K^+ \to \pi^+ \nu \overline{\nu})$ to a precision of $\mathcal{O}(10\%)$. SM expectation is $(8.4 \pm 1.0) \times 10^{-11}$ (JHEP 11 (2015) 033).
- Result from 2016-2018 data: $(10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9|_{syst}) \times 10^{-11}$ with a 3.4 σ significance (JHEP 06 (2021), p. 093).
- Broad physics programme includes: exotic searches, rare kaon decay measurements and searches for forbidden decays.

The Detector

- beam: 6% K^+ , 70% π^+ and 23% protons.

400 GeV/c protons from the SPS directed onto a beryllium target. Secondary 75 GeV/c charged

Upstream of decay region K^+ tagged by KTAG and tracked through GTK (silicon pixel detector).

Downstream of decay region: STRAW (charged track spectrometer), PID (RICH, MUVs, LKr), CHOD (hodoscope), photon vetoes (LAV, SAC, IRC) and other veto detectors (MUV0, HASC).

Kaon Identification

- K^+ must be "tagged" within the unseparated secondary hadron beam (~600 MHz).
- Several requirements:
 - 1. Precise timing better than 100 ps resolution.
 - 2. Sustain a K^+ rate of 36 MHz.
 - 3. Tagging efficiency >95%.
 - 4. Misidentification probability between π^+ and K^+ of less than 10^{-4} .
- coupled to a bespoke photon detection and readout system (KTAG).

• This is achieved using a differential Cherenkov counter with achromatic ring focus (CEDAR)

The CEDAR

- 1.1 m³ gas volume with the pressure tuned to select K^+ .
- Adjustable aperture between 0-20 mm.
- Internal optical axis precisely aligned with the beam axis.
- Original design used 8 PMTs, one at each exit window, does not work at NA62. PMTs cannot sustain high-rate environment.

- γ θ Beam
- Chromatic corrector

The KTAG

- New photon detector, front-end and read-out systems.
- KTAG consists of octants, each contains:-
- 1. Focusing lens mounted on quartz exit window focuses light onto a spherical mirror.
- 2. Spherical mirror reflects light radially onto an array of 48 PMTs (Hamamatsu, 32 R9880-110 + 16 R7400).
- Using N₂ the KTAG achieved a time resolution of 70 ps with an average of 19 photons per K^+ .
- K^+ tagged by requiring coincident light in at least 5 sectors.

Motivation for CEDAR-H

- with $35 \times 10^{-3} X_0$ from the gas.
- inelastic scattering.
- New optics required to account for different optical properties of H_2 .

• CEDAR-W filled with N_2 at 1.7 bar is the biggest contributor to material in the beam line. Total of $39 \times 10^{-3} X_0$

CEDAR-H uses H_2 radiator. At 3.8 bar, the material contribution from CEDAR-H is $7.3 \times 10^{-3} X_0$. Reduces

CEDAR-H Development

- Extensive simulations at University of Birmin using GEANT4 to analytically find initial optic parameters.
- Optical properties of H_2 vary with gas press
- Simulations performed at different pressures maximise photon yield.
- Pressure of 3.8 bar considered the working
- Left: Description of the optical parameters in CEDAR-W and CEDAR-H.

	CEDAR type		CEDAR-W	CEDAR-H
	Nominal gas type		N_2	$\rm H_2$
ignam	Nominal pressure [bar]		1.71	3.80
cal	Gas vessel cylinder	Length	4500	4500
		Inner radius	267	267
		Length	339	280
	Gas vessel cap	Inner radius	139	139
ure.	Chromatic corrector	Position along the beam axis	1855	1902
		Radius of curvature	1385	1307
		Central thickness	20	20
		Inner radius	75	75
		Outer radius	160	160
s to	Mangin mirror	Position along the beam axis	5353	5362
		Radius of curvature:		
		- refracting surface	6615	8994
		- reflecting surface	8610	9770
		Central thickness	40	40
		Inner radius	50	40
		Outer radius	150	150
point.	Diaphragm	Position along the beam axis	872	911
		Aperture central radius	100	100
٦	Condensers	Position along the beam axis	832	871
		Maximum thickness	10	10
		Radius of curvature	300	300
		Position along the beam axis	472	531
	Quartz windows	Thickness	10	10
		Radius	22.5	22.5
		Radial distance to window centre	103	103
	Optical caps	Position along the beam axis	450	450
		Maximum thickness	4.24	4.24
		Radius of curvature	114.62	114.62
		Position along the beam axis	322	322
	Spherical mirrors	Radius of curvature	51.68	77.52
		Diameter	50	50
		Radial distance to mirror centre	106	106

CEDAR-H Test Beam

- CEDAR-H performance measured at test beam at CERN on H6 beam line in Oct. 2022.
- No KTAG, instead 8 ET 9820QB PMTs, one at each CEDAR exit window.
- CEDAR-H was 440 m downstream of target at test beam, 70 m at NA62.
- 400 GeV/c primary proton beam from SPS on a beryllium target.
- 75 GeV/c H6 beam composition estimated to be: 4% kaons, 25% protons, 71% pions.
- Validated performance of optics and their alignment. Measured K^+ identification efficiency and $K \pi$ separation.

CEDAR-H at the H6 test beam.

Test Beam Results

- At **3.85 bar** the light yield was **19.1 photons** per kaon.
- Probability of misidentification (10^{-4}) from fitting trailing edge of pion peak.
- Diaphragm width chosen maximise photon yield and maintain required mis-id rate.

Installation at NA62

- Installed for the start of 2023 data taking. •
- Extensive safety systems to alert in the case of hydrogen leakage. •
- Atmospheric explosive zone (ATEX) ~ 1 m around the CEDAR-H. lacksquare

Commissioning: Alignment

- width.
- pressure.

CEDAR aligned to the beam by moving the XY motors. Must be done with a thin diaphragm

Considered aligned when N_{γ} per kaon is maximised for a fixed diaphragm width at the pion peak

Alignment of CEDAR-H in 2024

Commissioning: Pressure Scans

- Similar to test beam, multiple pressure scans performed at varying diaphragm apertures.

Light yield of ~21 photons per kaon. Improved with respect to the test beam due to using KTAG.

Relative height of peaks is determined by the beam composition (6% kaons, 23% protons and 70% pions).

CEDAR-H Performance at NA62

>99.5% efficiency for a 5-fold coincidence in 2024 data. Measured using $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ events.

30% reduction of elastically scattered beam particles originating upstream of GTK3.

Summary

- switching radiator medium from nitrogen to hydrogen.
- Test beam at CERN in 2022 ratified performance of CEDAR-H.
- approximately:
 - 21 photons per kaon giving a time resolution of ~65 ps.
 - Kaon tagging efficiency >99.5 % using 5-sector coincidence.
 - Pion misidentification probability $\leq 10^{-4}$
- Improvement in performance on the previous CEDAR-W.

CEDAR-H was proposed to reduce the material in the beam path at NA62. Achieved by

Successfully installed at NA62 for start of run 2023 and currently operating (2024) with