

EP-DT Detector Technologies

16th Pisa Meeting on Advanced Detectors

Towards more eco-friendly gaseous detectors

B. Mandelli, M.C. Arena, R. Guida, S. Juks, G. Rigoletti, M. Verzeroli

CERN

16th Pisa Meeting on Advanced Detectors 31st May 2024

1

New F-gas regulation: from phase down to out

The new Regulation establishes the total elimination of hydrofluorocarbons by 2050

- It is a major step towards climate neutrality
- First goal: reduction of 55% GHG emissions by the end of this decade compared to 1990 levels
- New restrictions also in the use of SF₆ and especially for high GWP gases
- It will result in a reduction in production and **reduced quotas** for F-Gas refrigerants, leading to an inevitable **increase in prices** for higher GWP refrigerants
- Keywords: to limit, to prevent, to ban the use of F-gases
- In 2023, the European Chemicals Agency (ECHA) released a proposal regarding **PFAS restrictions**
 - PFAS: per- and polyfluoroalkyl substances

- it envisages covers over 10,000 different PFAS, which are considered environmental pollutants with links to harmful health effects

GHG emissions at CERN

Greenhouse gas emissions at CERN arise from the operation of the Laboratory's research facilities. The majority of emissions come from CERN's core experiments and more than 78% are fluorinated gases

The CERN's objective is to reduce its scope emissions by 28% by the end of 2024

CERN strategies for GHG reduction

Gas recirculation: primary solution

Gas recirculation (and recuperation) systems are the first way to reduce GHG emissions for now and for future detectors

- The gas mixture is taken at the output of the detectors, it is purified and afterwards sent back to the detectors
 - Creation of several impurities
 - Recirculation usually from 90% to 100%
 - Necessary to not have leaks at detector level
- Possible to recirculate 100%: almost zero emissions
- At CERN: ~30 gas recirculation systems
- Detector volumes up to 100 m³
- When it is not possible to recirculate 100%, a recuperation system can be envisaged

Gas Recuperation: a second step

Sometimes it is not possible to recirculate 100% of gas mixture due to detector constrains

- Detector air **permeability**, max recirculation **fraction**, presence of impurities, etc.
- A fraction of gas has to be renewed
- Some gas is sent to the atmosphere
- This fraction of gas mixture can be sent to a recuperation plant
- The GHG is extracted, stored and re-used
- Challenges: R&D, custom development, operation and recuperated gas quality
- Gas recuperation can also be used to empty/fill the detectors during long shutdown periods

Gas recuperation systems for GHGs at CERN:

- CF4: CMS Cathode Strip Chambers and LHCb RICH2
 - Membrane and pressure swing

$C_2H_2F_4$ and SF_6 : Resistive Plate Chambers (RPC)

- Distillation process for azeotrope

C₄F₁₀: LHCb RICH1

- Distillation process

Alternatives gases

New eco-friendly liquids/gases have been developed for industry as refrigerants and HV insulating medium... not straightforward for detector operation

- Many gaseous detectors were conceived with use of GHGs
- Now it is time to address the usage of GHG worldwide, including particle detectors
- New concerns are already raising for the use of new "eco-friendly" gases, most of which are PFAS

Set-ups: laboratory and irradiation facility

Set-ups to test different types of gas mixtures and detectors: RPC, wire chambers, MPGD

Laboratory

- Gas mixing unit
 - Gas mixture up to 6 components
- DAQ
 - CAEN Digitizer V1730: resolution 0.12 mV, sampling 500 MS/s
- Gas analysis
 - GC, MS and ISE

Data analysis for RPC

pulse charge, pulse height, time, etc.

efficiency, avalanche/streamer ratio, cluster size, time resolution

Gamma Irradiation Facility (GIF++)

- Gamma source

Gas Analysis

- ¹³⁷Cs of 12 TBq -> 662 keV gamma
- Lead filters to allow attenuation factors (ABS) between 1 and 46000
- Muon Beam
 - 100 GeV and 10⁴ muons/spill (core beam size 10 x 10 cm²)
- Detectors tested up to to ~ kHz/cm²
- Very similar DAQ, gas system and gas analysis of laboratory

Alternatives for RPC gas mixture: R134a and SF₆

Alternatives for RPC gas mixture

Mid-term solution: addition of CO₂ to std gas mix

CO₂ as mid-term solution for RPC to mitigate GHG emissions of LHC RPC systems

- CO₂ selected as best compromise
 - He also good candidate but cannot use in experimental caverns
- The addition of CO₂ increases the streamer probability and broad the charge distribution
 - Necessary to increase the $SF_{\rm 6}$ concentration up to $1\,\%$
 - Increase of currents of >15% under irradiation
- Very good time resolution
- The CO₂ reduce the mean free path
- Long-term performance studies under gamma irradiation
 - Up to now, no sign of performance degradation

Already in use in ATLAS RPC system since summer 2023

Standard

30% CO2 + 0.9% SF6

30% CO2 + 0.6% SF6

30% CO2 + 0.3% SF6

40% CO2 + 0.9% SF6

Alternatives for RPC gas mixture

Use of HFO in RPC detectors

HFO1234ze identified as possible replacement of R134a

- Cannot replace 1:1 the R134a

- Too high w.p.: add He or CO₂ to lower it
- The HFO and CO₂ increase the charge concentration
- Currents are dominated by the CO2
- HFO brings a higher prompt charge content than R134a
- The addition R-134a helps lowering the background currents and prevent w.p. to be too high

R-1234ze performance with CO2 (+ R-134a) with cosmic muons

- 45% HFO + CO2 (ECO1)
 - Too high w.p. and high charge
- 25% HFO + CO₂ (ECO3)
 - Low GWP
 - High charge content and presence of streamers. Higher currents
- 22% HFO + 22% R134a+ CO₂
- Higher GWP
- Lower charge content than HFO only
- **Possible compromise** between performance and environment

HFO gas mixtures

RPC long-term studies with HFO gas mixtures

RPC long-term operation with eco-friendly gas mixtures under high background radiation and possible ageing effects must be investigated

ECOGAS@GIF++ collaboration

RPC detectors

- Set-up at CERN Gamma Irradiation Facility (GIF++)
- 12 TBq ¹³⁷Cs and H4 SPS beam line
- Several RPCs under test from different experiments
- Detector performance studies
 - At different background radiations
 - Three gas mixtures tested (ECO1,ECO2, ECO3): CO₂ 50-70% + <u>HFO 45-25%</u> with~5% iC₄H₁₀ and 1% SF₆
- Long-term performance studies under gamma irradiation
- Monitor of dark and ohmic currents
- Goal: to accumulate an equivalent charge of the HL-LHC Phase

Long-term irradiation

137**CS**

ECO2: 35% HFO, 60% CO₂ 4% iC₄H₁₀, 1% SF Test-beam performance

Alternatives for RPC gas mixture

SF₆ alternatives

SF₆ has a very high GWP and it contributes for ~5% in the GWP of RPC gas mixture

All SF₆ alternatives tested in several concentrations as replacement of SF₆ in standard gas mixture

3M[™] Novec[™] Dielectric fluids

- Alternatives to SF₆ for arc quenching and insulation applications $\begin{bmatrix} \frac{1}{10} & 0 \\ 0 & 1.75 \\ 0 & 1.50 \end{bmatrix}$
 - Dielectric breakdown strength ~1.4-2 times that of SF₆
- Novec 4710 (GWP 2100)
 - Very good performance but...
 - It reacts with water: need further studies
- Novec 5110 (GWP <1)
 - Very low GWP but..
 - Sensitive to UV radiation and higher wp
- They are considered PFAS and 3M stopped to produce them
 - Production is moving to China

Other alternatives

- Looks for other gases not used only for HV plants - Other electronegative gases could work
- AMOLEA HFO1224yd (GWP <1)
 - Good performance
- CF₃I (GWP 0.4)
 - Good performance but toxic and mutagenic
- C₄F₈O (GWP ~8000)
 - Good performance at 1.5%
 - 1.5% C₄F₈O GWP equivalent to 0.5% SF₆

SF₆ alternatives

Not only detector performance

Studies on F-gases properties: examples

Conclusions

With climate change a growing concern and implementation of F-gas regulations, it is fundamental for existing and future particle detector applications to reduce GHG emissions and search for eco-friendly gas mixtures

Gas Recirculation

- It is the first way to reduce GHG emissions: up to 100% reduction
- Fundamental to not have leaks at detector level
- Development of small (and cheap) recirculation systems for small experiments/labs

Gas Recuperation

- Second way to reduce GHG emissions when it is not possible to recycle 100% of the gas mixture due to detector constrains
- Very complex and custom-made systems (not feasible for small experiments)

Alternative gas mixtures

- The way for the future to get rid of GHG
- Very difficult to find eco-friendly gas mixtures for current LHC gaseous detectors
- Need to understand detector lifetime with new eco-friendly gases
- Some concerns also in the use of these "eco-friendly" gases for the future