Contribution ID: 149 Type: Poster

The reSPECT project: an innovative SPECT detection system based on high-Z organic scintillators

Tuesday, 28 May 2024 08:55 (1 minute)

The Global Cancer Observatory reports that in 2020 the European population had a 28.2% risk of developing cancer before the age of 75 years, with a 11.7% mortality risk. Such mortality rate can be reduced through early detection of tumours by means of imaging techniques. Among them, nuclear imaging scans play a pivotal role for noninvasive diagnosis. This contribution is focused on Single Photon Emission Computed Tomography (SPECT), a nuclear imaging technique that allows to inspect physiological processes inside the patient's body through the detection of the gamma rays emitted by a radiopharmaceutical administered to the patient.

Conventional SPECT detection systems consist of a monolithic inorganic scintillation crystal, typically Thallium-activated sodium iodide, whose scintillation signal is read by an array of photomultiplier tubes. The innovative gamma detector concept investigated in this contribution, instead, relies on a Tungsten metal frame that serves both as a collimator and as a container for the scintillator segments. The reSPECT project involves the development of innovative organic scintillators doped with high-Z impurities, to profit from the extremely fast scintillation process, while maintaining a remarkable photoelectric effect probability (despite the plastic substrate) and a low cost. Moreover, the process of polymerization used to produce such scintillator segments permits to give them any desired size and geometrical shape.

Our project involves a custom readout system tuned for fast scintillation events and high rates, with an independent channel for each scintillator segment to improve the spatial resolution of the detector. A silicon readout system allows for a combination with MRI systems, while the ability to sustain high event rates opens the way to a possible theragnostic use.

In this contribution, the preliminary results obtained with the scintillator prototypes will be presented, in comparison with the solutions currently available on the market.

Collaboration

Role of Submitter

I am the presenter

Primary authors: BURATTINI, Alberto (Scuola post-laurea in Fisica Medica, Dipartimento di Scienze e Biotecnologie medico-chirurgiche, Sapienza Università di Roma, Italy); SARTI, Alessio (Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via Antonio Scarpa 14, Rome, 00161, Italy); DE GREGO-RIO, Angelica (Istituto Nazionale di Fisica Nucleare); Prof. SCHIAVI, Angelo (Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via Antonio Scarpa 14, Rome, 00161, Italy); MUSCATO, Annalisa (Scuola post-laurea in Fisica Medica, Dipartimento di Scienze e Biotecnologie medico-chirurgiche, Sapienza Universita' di Roma, Italy); Mr TRIGILIO, Antonio (Università di Roma "La Sapienza"); ROCCO, Daniele (Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via Antonio Scarpa 14, Rome, 00161, Italy); QUATTRINI, Flaminia (Istituto Nazionale di Fisica Nucleare); FRANCIOSINI, Gaia (Istituto Nazionale di Fisica Nucleare); TRAINI, Giacomo (INFN - Roma 1); DE VINCENTIS, Giuseppe (Department of Radiological Sciences, Oncology and Anatomo-Pathology, University of Rome, Rome, Sapienza, 00185, Italy); MATTIELLO, Leonardo (Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via Antonio Scarpa 14, Rome, 00161, Italy); GARBINI, Marco (Enrico Fermi"Historical Museum of Physics and Study & Research Centre-CREF, Via Panisperna 89a, Rome, 00184, Italy); MAGI, Marco (Istituto Nazionale di Fisica Nucleare); TOPPI, Marco (Istituto Nazionale di Fisica Nucleare); MARAFINI, Michela (Istituto Nazionale di Fisica Nucleare); MIRABELLI, Riccardo (Istituto Nazionale di Fisica Nucleare); FRANTELLIZZI, Viviana (Department of

Radiological Sciences, Oncology and Anatomo-Pathology, University of Rome, Rome, Sapienza, 00185, Italy); PA-TERA, vincenzo (Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via Antonio Scarpa 14, Rome, 00161, Italy)

Presenter: TRAINI, Giacomo (INFN - Roma 1)

Session Classification: Applications to Industrial and Societal Challenges - Poster session

Track Classification: T5 - Applications to Industrial and Societal Challenges