

The reSPECT project: an innovative SPECT detection system based on high-Z organic scintillators

Giacomo Traini^b, Alberto Burattini^{c,d}, Marta David^e, Angelica De Gregorio^{a,b}, Giuseppe De Vincentis^{f,} Gaia Franciosini^{a,b}, Viviana Frantellizzi^f, Leonardo Gasparini^h, Marco Garbini^e, Nils Krahⁱ, Marco Magi^{d,b}, Enrico Manuzzato^h, Michela Marafini^{e,b}, Leonardo Mattiello^d, Annalisa Muscato^{c,b}, Roberto Passerone^g, Vincenzo Patera^{d,b}, Flaminia Quattrini^{a,b}, Daniele Rocco^d, Alessio Sarti^{d,b}, Angelo Schiavi^{d,b}, Marco Toppi^{d,b}

a Sapienza University of Rome, Department of Physics, Rome, Italy b INFN National Institute for Nuclear Physics, Roma I Section, Rome, Italy c Sapienza University of Rome, Post-graduate School in Medical Physics, Rome, Italy d Sapienza University of Rome, Department SBAI, Rome, Italy e CREF Centro Ricerche Enrico Fermi, Rome, Italy f Department of Radiological Sciences, Oncology and Anatomo-Pathology, University of Rome, Italy g University of Trento, Department of Information Engineering and Computer Science, Trento, Italy h FBK - Sensors and Devices, IRIS Research Unit, Povo (TN), Italy i University Lyon, CNRS, CREATIS, Lyon, France

Single Photon Emission Computed Tomography

- Single-Photon Emission Computed Tomography (SPECT) is a nuclear imaging technique that allows to investigate the physiological processes that take place inside the patient's body.

The reSPECT detection system

The reSPECT detection system will have a modular structure

- Use plastic scintillators instead of inorganic crystals to profit from their fast signal, ease of manipulation and low cost.
- Plastic scintillators are not optimized for the detection of gamma rays via photoelectric effect.
- The idea is to enrich our organic scintillators with high-Z impurities (e.g. Bismuth or Cerium) [1].

[1] Mattiello L;, Patera V.; Belardini A.; Rocco D.; Marafini M.; Organic Scintillator. Patent WO2023156957A1, 2023.

High-Z plastic scintillators

We produced samples of high-Z organic scintillators and tested their performances with different radioactive

Expected performances

- The expected performances of the reSPECT detection system have been obtained through Monte Carlo simulations.
- The simulated scintillators have a 10% Bismuth concentration.

sources and readout systems [2].

- Transparency turns out to be good up to very high dopant The reSPECT detection system allows to realize a total-body SPECT. concentrations.
 - de structure by aggressive alkalis used for the ph plogy has now been reauzed by race for the ph plogy has now been reauzed by race for the ph bioth 7 impl high-Z impurities ide phote Bismuth 2-10%)
- The MC simulations showed that a 10% Bismuth concentration is needed to ensure good imaging performances.
- We realized a 10%-doped sample with promising results: such dopant concentrations are not available on the market.
- Light collection efficiency is crucial with this geometry!

*The spatial resolution can be improved by adjusting the geometrical parameters.								
SPECT DETECTION SYSTEM	SENSITIVITY PER MODULE @140 keV	SYSTEM SPATIAL RESOLUTION (FWHM) @10 cm	DECAY TIME	RATE CAPABILITY	TOTAL COST			
Anger Camera (Nal) FoV: 53 x 39 cm ²	170 cpm/µCi	7.4 mm	250 ns	0.25k-3k cps/cm ²	\$\$	×		
CZT FoV: 39 x 51 cm ²	190 cpm/µCi	7.6 mm	350 ns	30k-700k cps/cm²	\$\$\$	~	×	
reSPECT 6 rotating blocks, FoV: 35 x 35 cm ²	184 cpm/µCi (energy cut @80 keV)	8.9* mm (2 mm pixels)	2-5 ns	50M-200M cps/cm ²	\$			

Prototypes performances

- The performances of the scintillator prototypes have been compared with those of the commercial alternatives (Eljen Technology) in terms

 of light output and time resolution. The realized high-Z 	Sample	Time Resolution (Statistic Error)	Measured #photoelectrons		
enriched scintillators also showed better	EJ-256 (Pb 1.5%)	(360 ± 17) ps	45 ± 10		
timing performances	EJ-256 (Pb 5%)	(520 ± 31) ps	14 ± 1		
than the commercial	2N 14% (Bi 2%)	(233 ± 13) ps	42 ± 3		
 Open possibilities 	2N 14% (Bi 5%)	(278 ± 33) ps	17 ± 2		
for Time-of-Flight	2N 14% (Bi 10%)	(340 ± 46) ps	21 ± 1		
PET applications.	Data obtained with Ac	dvanSiD NUV SiF	PMs (ASD-NUV3S-P)		

- We produced samples of high-Z organic scintillators polymerized in TEFLON in order to study the matching with this material.
- The results show a very good collection efficiency and transparency.

To do

To do

100

20

Ongoing

[2] L.Galli et al. WaveDAQ: An highly integrated trigger and data acquisition system. NIM A 936 (2019) 399–400 doi:10.1016/j.nima.2018.07.067

New 0% Bi

New 2% Bi

New 10% Bi

