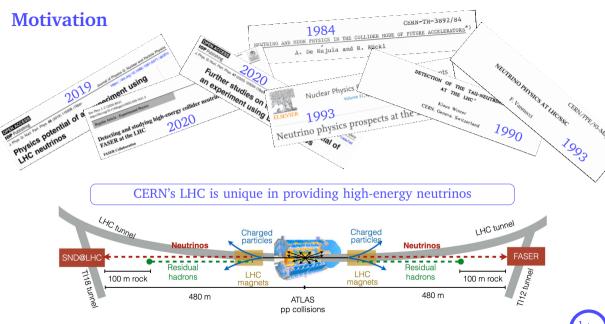
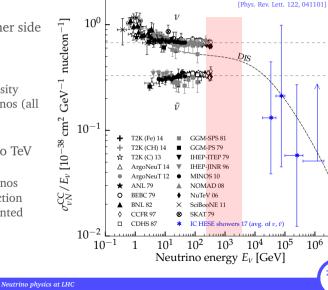
SND@LHC: a roadmap for neutrino detection at LHC and HL-LHC

16th Pisa Meeting on Advanced Detectors, La Biodola, May 27 2024 Elena Graverini



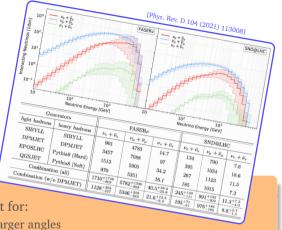
SND@LHC: a roadmap for neutrino detection at LHC and HL-LHC (...and SPS)

16th Pisa Meeting on Advanced Detectors, La Biodola, May 27 2024 Elena Graverini



Neutrino physics at the LHC

- 2× complementary detectors on either side of the ATLAS interaction point
 - FASER ν on axis: $\eta > 8.8$
 - SND@LHC off axis: $7.2 < \eta < 8.4$
 - Run 3 aim: collect 290 fb^{-1} luminosity
 - expect $\mathcal{O}(10000)$ interacting neutrinos (all flavours)
- LHC neutrinos range from 10² GeV to TeV
 - unexplored area
 - first detection of collider TeV neutrinos
 - relatively large interaction cross-section
 - explore ν interactions at unprecedented energies

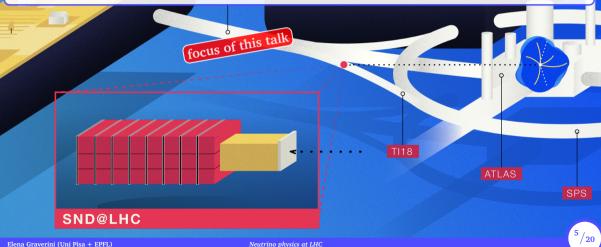

20

Physics with neutrinos

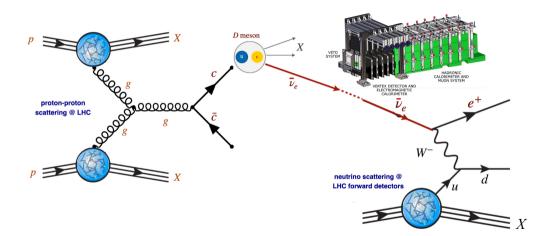
- forward neutrinos are mainly produced in hadron decays
- measurements will provide novel input to validate/improve generators
- first data on forward charm, hyperon, kaon

Neutrino physics at LHC energies

- probe charm quark production with ν_e . Relevant for:
 - future colliders: FCC-*hh* will probe same *x* at larger angles
 - cosmic ray physics:
 - energy scale corresponds to VHE atmospheric neutrinos, main BG for astrophysical neutrinos
 - charm production leading production mechanism for VHE atmospheric neutrinos

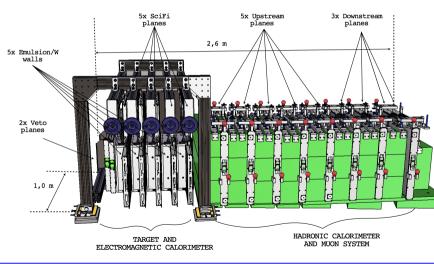

20

FASER*ν*

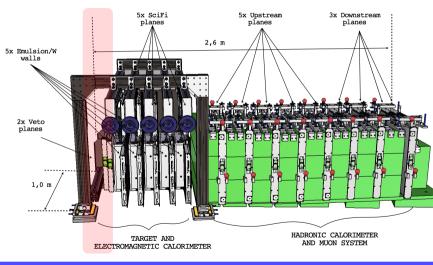

- installed in 2020–2022 in TI12
- compact $25 \times 25 \times 135 \text{ cm}^3$ detector
- emulsion/tungsten target

Scattering and Neutrino Detector at the LHC

- 480 m from IP1, in the TI18 tunnel; slightly off-axis: $7.2 < \eta < 8.4$
- approved by CERN Research Board in 2021, taking data since 2022
- SND@LHC collaboration: 180 members from 23 institutes in 13 countries and CERN



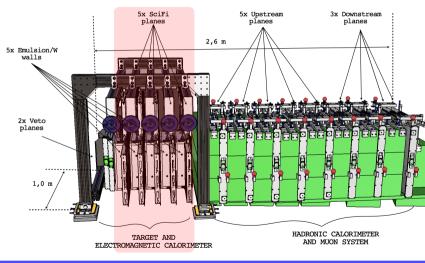
The concept


Neutrino physics at LHC

- hybrid, standalone detector
- optimised for the identification of the three neutrino species
- ...and the detection of scattering FIPs

/20

Veto

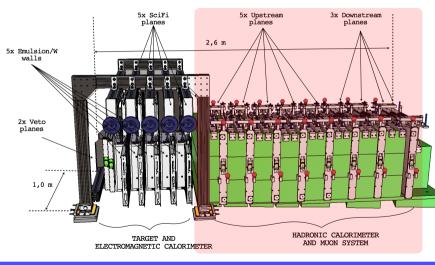


- upstream veto: two planes of scintillating bars
 - tag and discard events with incoming muons

/20

• **plus one:** see Giulia Paggi's poster! (Mon + Tue morning)

Target region: vertexing, τ ID, energy measurement (ECAL)



- 40 X_0 sampling calorimeter \longrightarrow contain whole shower
- emulsion cloud chambers (ECC): interleaved tungsten plates / emulsions
 - vertexing, τ identification

20

 scintillating fiber planes (SciFi): timing / position

Downstream region

- muon system: timing, muon ID, energy measurement (HCAL)
 - interleaved plastic scintillator bars / iron planes
 - sampling every λ

Elena Graverini (Uni Pisa + EPFL)

Neutrino physics at LHC

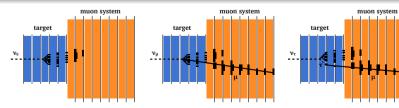
/20

Installation: souvenir pics

September 2021

March 2022

Two-phase event reconstruction

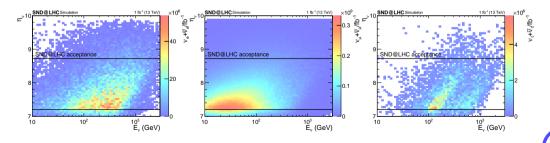

Online, using electronic detectors

- identify scattering candidate (neutrino or FIP)
- identify muon candidates (downstream muon planes), EM shower (SciFi)
- measure neutrino energy (SciFi + muon, hit counting or machine learning techniques)

Offline, with nuclear emulsions

[J. Phys. G: Nucl. Part. Phys. 46 115008]

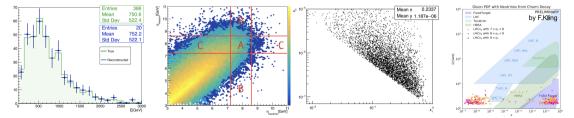
- develop & scan films extracted in quick access after \sim 25 fb⁻¹exposure (\sim 3 months)
- reconstruct ν interaction vertex, τ candidates
- match showers with events recorded by electronics detectors



Simulation & expected neutrino flux

Flavour	Neutrinos in acceptance	CC neutrino ii (E) [GeV]	nteractions Yield	NC neutrino ii 〈E〉 [GeV]	nteractions Yield
ν_{μ}	3.4×10^{12}	450	1028	480	310
$\bar{\nu}_{\mu}$	3.0×10^{12}	480	419	480	157
ν_e	4.0×10^{11}	760	292	720	88
$\bar{\nu}_e$	4.4×10^{11}	680	158	720	58
ν_{τ}	2.8×10^{10}	740	23	740	8
$\bar{\nu}_{T}$	3.1×10^{10}	740	11	740	5
all	7.3×10^{12}		1930		625

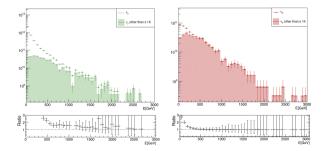
Expected flux 290 fb⁻¹


- ν production in *pp* collisions at LHC simulated with FLUKA + DPMJET-3
 - full description of all machine elements from IP1 to TI18
- ν_{τ} production with PYTHIA8
- ν interactions in detector: GENIE
- detector response: GEANT4

20

Neutrino physics: ν_e and charm

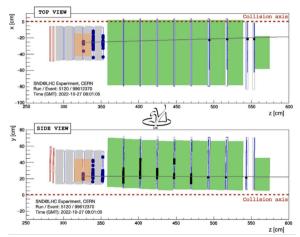
- 90% of $\nu_e + \bar{\nu}_e$ produced in charm decays: insight on heavy-quark production
 - statistical subtraction of ν_e component from kaon decays (~20% syst.)
 - energy response from simulation + calibrated with hadron beam from SPS (2023)
- Measure σ ($pp \rightarrow \nu_e X$) and derive charmed hadron yield (~5% stat, ~35% syst.), open charm
 - angular correlation between ν_e and X_c , and between X_c and parent charm
 - average lowest momentum fraction accessible at SND@LHC: $x \sim 10^{-6}$
 - constrain PDF using SND@LHC data: taking ratio of cross-sections at different energies/rapidities reduces scale uncertainty
 - use LHCb measurement in $\eta <$ 4.5, $\sqrt{s} =$ 7, 13 TeVs


[Nucl. Phys. B871 (2013) 1-20] [JHEP 03 (2016) 159]

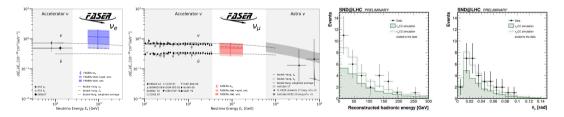
[LHCC-P-016]

Neutrino physics at LHC

Neutrino physics: $e/\mu/\tau$ comparison


- ν_e and ν_{τ} only come from charm decays in SND@LHC
 - ratio $N_{\nu_e + \bar{\nu}_e}/N_{\nu_\tau + \bar{\nu}_\tau}$ depends only on decay branching ratios and charm fractions
 - sensitive to cross-section ratio of the two ν flavours: *e*- τ LFU in neutrino sector (unc. ~30%)
- ν_{μ} neutrinos contamination by π/K decays flat above 600 GeV
 - ratio $N_{\nu_e+\bar{\nu}_e}/N_{\nu_\mu+\bar{\nu}_\mu}$ for $E_{\nu} > 600$ GeV probes $e_{-\mu}$ LFU (uncertainty ~15%) and is unaffected by charm fractions and branching ratio uncertainties

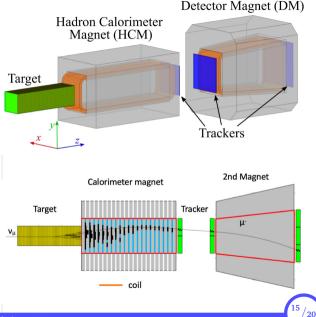
First results


2023: first collider neutrinos

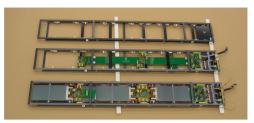
- FASER and SND@LHC published the first observation of collider muon neutrinos using their 2022 datasets [PRL 131 (2023) 031801-031802]
- FASER: expected 151 ± 41 events with ~ 2 events of bkg; observed 153 (16σ)
- SND@LHC: expected 4.2 with 0.09 bkg; observed 8 events (6.8σ)
- SND@LHC with 2022-2023 dataset: observed 32 events (12*σ*)

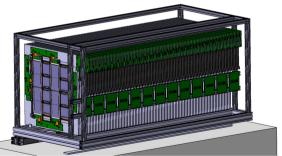
... in two flavours

- FASER ν analysed part of the dataset to obtain the first cross-section in the TeV range [arXiv:2403.12520]
- SND@LHC observed 6 shower-like (0 μ) events (over \sim 0.1 expected bkg)
 - shower patterns identified, vertex association in progress
- kinematics of muon neutrino events at SND@LHC in agreement with predictions

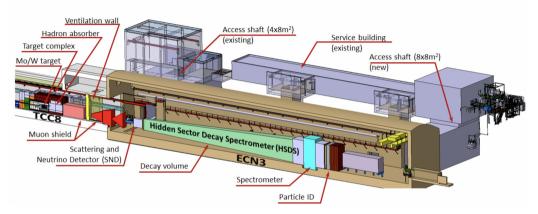


The future


AdvSND

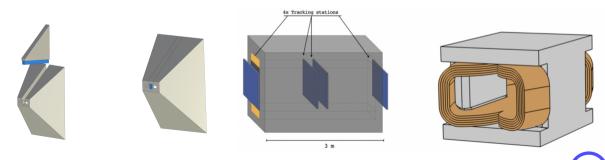

- continue with an improved detector in Run 4 and beyond
- AdvSND Far (TI18, current location of SND@LHC): Run 4
 - civil engineering to improve acceptance
 - calorimeter + spectrometer magnets: separate ν from $\bar{\nu}$
 - charm production measurements with improved statistics
 - lepton flavour universality
- AdvSND Near (UJ57/UJ56, near IP5): Run 5
 - overlap with LHCb acceptance where *c*, *b* measured
 - reduce systematic uncertainties for AdvSND - Far
 - measure v cross-sections

AdvSND target


- CMS Silicon Trackers as vertex/ECAL
- CMS board approved reuse of TOB modules + spares on Feb 9, 2024
- geometry: map 8 10 \times 20 cm² modules to one 40 \times 40 cm² SND target station
- 100 sandwiches of W+silicon
- prototype under construction
 - will test performance in summer
- option: pixel layers
 - use developments for ALICE ITS3: large scale MOnolithic Stitched Sensors (MOSS)
 - could replace 50 layers with MOSS sensors overlapping in central region (—> form tracklets!)

SND @ Beam Dump Facility

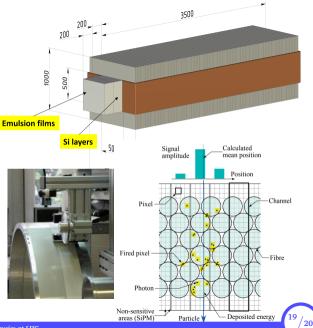
- BDF + SHiP very recently approved by CERN directorate for construction in North Area
- SHiP experiment made of two parts: hidden sector decay spectrometer (FIPs) + scattering and neutrino detector (LDM + neutrino physics)


20

• 400 GeV/*c p* beam extracted from SPS; expect several 10^{20} proton-target collisions

Neutrino physics at LHC

SND @ BDF


- instrumented target/tracker for LDM and neutrino interactions
 - radial dependence of flux \longrightarrow long and narrow
 - doubles up as sampling calorimeter
 - integrated in the last section of the muon shield
- followed by muon spectrometer
- design can and will be reoptimised!

20

SND @ BDF target tracker

- experimental signatures of ν_{τ} :
 - double kink (τ production and decay): requires superior vertex and tracking capabilities ($\beta\gamma c\tau < 1 \text{ mm}$)
 - kinematic of decay products: final state neutrinos carry away a significant fraction of τ energy. Need large data sample to perform statistical analysis
- two complementary strategies:
 - layered calorimeter "à la SND@LHC" made of magnetized iron / scifi planes
 - two blocks of W instrumented with emulsion films and silicon

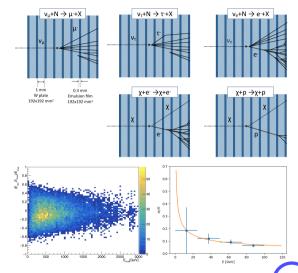
Summary and plans

- two experiments started studying forward neutrinos from LHC collisions in 2022
- physics reach of LHC expands:
 - study TeV-range νN interaction for all three flavours
 - access parton momenta down to $x \sim 10^{-6} \longrightarrow$ constrain QCD uncertainties
- first measurements demonstrate very low background and ν_e, ν_μ visible
- many ideas and plans to expand this field both at HL-LHC and at the BDF

Elena Graverini (Uni Pisa + EPFL)

Neutrino physics at LHC

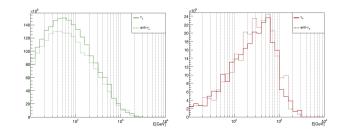
Spare slides


Physics performance: key features

Flavour identification

- ν_{μ} ID efficiency ~77% driven by acceptance and occupancy (μ in donwstream Muon planes)
- ν_e identified by presence of EM shower in the ECC brick (99% efficiency)
- ν_{τ} ID relies on topological criteria (secondary vertex), \sim 50% efficient

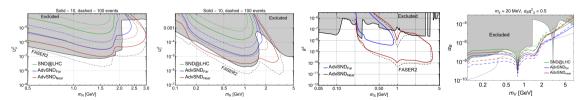
Energy measurement


- SND@LHC is a non-homogeneous sampling calorimeter
- overall energy resolution ${\sim}20{\text{-}}30\%$
- response modelled with linear regression, ML alternative under construction

Consistency check

$$\frac{\sum_{i} \sigma_{NC}^{\nu_{i}} + \sigma_{NC}^{\bar{\nu}_{i}}}{\sum_{i} \sigma_{CC}^{\nu_{i}} + \sigma_{CC}^{\bar{\nu}_{i}}} = \frac{1}{2} \left\{ 1 - 2\sin^{2}\theta_{W} + \frac{20}{9}\sin^{4}\theta_{W} - \lambda \left(1 - 2\sin^{2}\theta_{W} \right) \sin^{2}\theta_{W} \right\}$$

- if dN/dE is the same for ν and $\bar{\nu}$, NC/CC cross section ratio equals ratio of observed events
- for deep inelastic scattering, it is a function of θ_W and of the properties of the target material
- can be measured with 10% precision and compared to SM predictions



Scattering signatures and NP

20

- not main goal, but dense detector also ideally suited to detect feebly interacting particles
- e.g.: decay of mediators produced in collisions: $pp \rightarrow N + X$, $N \rightarrow$ visible
- e.g.: light dark matter scattering, similar to NC neutrinos interactions: $\chi + N \rightarrow \chi + N$
 - consider $pp \rightarrow V + X$, $V \rightarrow \chi \chi$ where χ scatters on SND@LHC target
 - direct detection complementary to missing-energy approach (NA64)
- time-of-flight techniques ($\sigma_t = 200$ ps) sensitive to larger masses (~ 10 GeV for $E_{\chi} \sim 1$ TeV)
- opportunity for upgraded detector AdvSND operating in Run4+

