

Frontier Detectors for Frontier Physics 16th Pisa Meeting on Advanced Detectors May 26 – June 1 2024 • La Biodola, Isola d'Elba (Italy)

Si-microstrip LGAD detectors for cosmic-ray space-borne instruments

V. Vagelli^{1,2} (Italian Space Agency– Science and Research Directorate)

on behalf of the PTSD team

M. Barbanera², E. Cavazzuti¹, M. Duranti², V. Formato², M. Mergè¹, M. Miliucci¹, M. Movileanu², B. Negri¹, A. Oliva²

1) Italian Space Agency

2) INFN

+ many thanks to L. Pacini (INFN)

Pentadimensional Tracking Space Detector (PTSD)

is a project funded by NextGenerationEU and Italian Ministry of University and Research PNRR M4.C2.1.1, PRIN 2022, n. 2022JNF3M4, CUP ASI F53D23001370008

Finanziato dall'Unione europea NextGenerationEU

Si-microstrip LGAD detectors for cosmic-ray space-borne instruments

- Scientific context and 5D tracking in space
- Tracking with Low Gain Avalanche Diodes
- The PTSD project: space-driven R&D of LGAD-µstrips detectors

Pentadimensional Tracking Space Detector (PTSD) is a project funded by NextGenerationEU and Italian Ministry of University and Research

PNRR M4.C2.1.1, PRIN 2022, n. 2022JNF3M4, CUP ASI F53D23001370008

Finanziato dall'Unione europea NextGenerationEU

Charged CRs: state of the art

Novel experimental approaches that target all opportunities of space platforms must be addressed, from **cubesats and nanosatellite constellations** up to **large-size space missions** and **Moon**, including **stratospheric balloon flight missions**.

+ synergic activity at ground laboratories and accelerators to tackle technological challenges and enable new observational approaches

Large area Si-microstrip detectors in space

Most of space detectors for charged cosmic ray and γ-ray measurements require **solid state tracking systems based on Si-µstrip sensors.** Si-µstrip detectors are the preferred solution to instrument **large area detectors** with larger number of electronics channels coping with the **limitations on power consumption in space**

Operating Missions									
	Mission	Si-sensor	Strip-	Readout	Readout	Spatial			
	Start	area	length	channels	pitch	resolution			
Fermi-LAT	2008	\sim 74 m ²	38 cm	\sim 880 \cdot 10 ³	228 µm	\sim 66 μ m			
AMS-02	2011	$\sim 7 \mathrm{m}^2$	29–62 cm	\sim 200 \cdot 10 ³	110 <i>µ</i> m	\sim 7 μ m			
DAMPE	2015	$\sim 7 \mathrm{m}^2$	38 cm	\sim 70 \cdot 10 ³	242 µm	\sim 40 μ m			

Future Missions									
	Planned	Si-sensor	Strip-	Readout	Readout	Spatial			
	operations	area	length	channels	pitch	resolution			
HERD	2030	\sim 35 m ²	48–67 cm	\sim 350 \cdot 10 ³	\sim 242 μ m	\sim 40 μ m			
ALADInO	2050	\sim 80-100 m ²	19–67 cm	\sim 2.5 \cdot 10 ⁶	\sim 100 μ m	$\sim 5 \mu \mathrm{m}$			
AMS-100	2050	\sim 180-200 m ²	$\sim 100\mathrm{cm}$	$\sim 8 \cdot 10^6$	$\sim 100 \mu \mathrm{m}$	$\sim 5 \mu \mathrm{m}$			

[1] HERD Collaboration. HERD Proposal, 2018 https://indico.ihep.ac.cn/event/8164/material/1/0.pdf

[2] Battiston, R.; Bertucci, B.; *et al. High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO).* Experimental Astronomy 2021. <u>https://doi.org/10.1007/s10686-021-09708-w</u>

[3] Schael, S.; et al. AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2. NIM-A 2019, 944, 162561. <u>https://doi.org/10.1016/j.nima.2019.162561</u>

Large area 5D-Tracking in space

M. Duranti et al., Instruments 2021, 5(2), 20

Backsplash particles from downstream calorimeter affect tracking efficiency by tens % at 1 TeV

Large area 5D-Tracking in space

M. Duranti et al., Instruments 2021, 5(2), 20

Backsplash particles from downstream calorimeter affect tracking efficiency by tens % at 1 TeV

In addition to coordinate and charge |Z| measurements, concurrent timing information at hit-level in tracker (5D-tracking) may improve reconstruction efficiency and particle ID, such as:

IMPROVED TRACK FINDING

Hit timing information improves track reconstruction on high rate environments and identifies backscattering hits from downstream calorimeters

TIME OF FLIGHT

Hit timing resolutions of ~ 100 ps enable ToF measurements with SiMS complementary to scintillators with fast light readout

REMOVE "GHOST" HITS

Separating tracks in time can mitigate the ambiguity of "ghost" hits in SiMS with strips running in perpendicular directions

PARTICLE ID

Track timing identifies slow low-energy particles backscattering from downstream calorimeters for primary hadronic particle crossings

Effects of 5D-Tracking in backscattering events

M. Duranti et al., Instruments 2021, 5(2), 20

Timing resolution benchmark: < 100 ps (enabled with Si-µstrip LGAD [+ mitigation of FE consumption]) **Break-through objectives (**e.g.: performant isotope separation): < 50 ps (requires readout noise mitigation approaches)

Tracking with Low Gain Avalanche Diodes

R&D mostly driven by next-generation collider detectors / upgrades

Physics requirement: time information on all hit of tracker detectors for high-energy and high-intensity HEP colliders

- < 30ps timing resolution
- $O(10)\mu m$ spatial resolution
- $O(10^{16})n_{eq}/cm^2$ radiation tolerance

Basic principle:

- **Thin** Si sensor (<150µm), with intrinsic moderate gain obtained with a gain layer creating high E-field
- Gain: 10-50
- Excellent timing performances: ~10-20 ps

An 'almost consolidated' technology, yet very challenging

Comparison WF2 Simulation - Data Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

Roadmap to 5D Tracking in Space

Technology first assessed by CNM (G. Pellegrini et al., NIM-A 765, 2014) and CERN-RD50

Several facilities involved today in LGAD sensor developments CNM (ES), FBK (IT), BNL (USA), Hamamatsu (JP), IHEP-NDL (CN), Micron (UK), ... and readout electronics Univ. California Santa Cruz (USA), FNAL (USA), INFN (IT)

Typical sensor layouts: 20µm-100µm substrates, single sided, O(mm²) area

Some considerations on large area 5D tracking in space:

- LGAD R&D driven by acceleration applications on pixel layout
- Si-µstrip are consolidated technology largely employed for particle detection in space
- µstrip LGAD detectors not optimized for space applications
- Low Gain Avalanche Diode to be space qualified
- Sensor dimensions will not probably go larger than few cm² (see K. Nakamura, TREDI 2024) R&D to mitigate capacitance noise and power consumptions in daisy-chained sensors

G. Giacomini, Sensors 2023, 23(4), 2132

Early production of single channel devices and arrays at BNL

Recent production of 1.3 mm × 1.3 mm devices at BNL (match the pixel size of the CMS and ATLAS timing detectors)

Pentadimensional Tracking Space Detector

R&D activity to increase LGAD Si-µstrip TRL for space from TRL=2 to TRL=5

Main objective

Develop a breadboard laboratory model for verification of requirements, functionalities and space qualification of LGAD µstrip

Funding and activities started in Sep 2023, duration 2 years, c.a. 200k€ fundings

Pentadimensional Tracking Space Detector (PTSD) is a project funded by NextGenerationEU and Italian Ministry of University and Research PNRR M4.C2.1.1, PRIN 2022, n. 2022JNF3M4, CUP ASI F53D23001370008

Finanziato dall'Unione europea NextGenerationEU

Capacitance in daisy-chained LGADs

AMS-02 upgrade, Layer-0 (1/4 plane) @ INFN Perugia, Terni labs

M. Duranti, TREDI 2024

Capacitance in daisy-chained LGADs

AMS-02 upgrade, Layer-0 ladder @ INFN Perugia

- **p** = pitch
- *I* = strip lenght
- **d** = thickness
- C_i = interstrip capacitance ~ 1 pF/cm * / = 10 100 pF
- C_d = decoupling capacitance ~ 1000 pF (DC sensors) or 120 pF/mm² (AC sensors) > $C_i C_b C_g C_{ii}$
- C_b = backplane capacitance ~ 1 pF/cm * *l* * *p/d* = 0.5 2 * 10 100 pF
- C_g = guardring capacitance << C_i
- **C**_{ii} = first-to-third strip capacitance << C_i

For thin and long strips capacitance must be kept under limit

Capacitance in daisy-chained LGADs

AMS-02 upgrade, Layer-0 ladder @ INFN Perugia

N. Kratochwil et al., PANDA experiment

b) standard "parallel" readout

bias voltage independent on number of sensors
 X total capacitance seen by readout FEE scales with number of sensors

a) "serial" readout

✗ bias voltage scales with number of sensors
 ✓ total capacitance seen by readout FEE scales
 down with number of sensors

"Stacked" 5D sensor

Si-µstrip sensor for timing and moderate resolution coordinate measurement coupled with a thicker standard SiMS sensor for charge and high resolution coordinate measurement.

Driver design: LGAD + standard Si-µstrip in serial readout

- combine a standard µstrip sensor (2D + Z) with an LGAD (2D + timing)
- serial readout of the "stack" to reduce LGAD capacitance
- use standard µstrip as "structural" material for a very thin LGAD layer

Strips running in opposite directions -> measurement of 2D coordinates with different resolutions

 suits the requirements for a tracking system in a magnetic spectrometer with oriented magnetic field

Mechanical structures and interfaces will be an issue

Requires a double-sided LGAD

• costs and risks of process development, yield, assembly... increase

"Stacked" 5D sensor – Proof of concept design

Simple simulations confirm the approach Feedback on starting design, circuitry to be optimized

Design confirmed also adding adjacent strips

"Stacked" 5D sensor – Proof of concept design

Variant approach

This config could reduce the assembly complexity:

- No bonding/kapton between LGAD and SiMS: only glue
- Time information common to all channels

Preliminary studies are encouraging

Pentadimensional Tracking Space Detector

R&D activity to increase LGAD Si-µstrip TRL for space from TRL=2 to TRL=5

A conceptual design of the demonstrator compatible with the constraints in weight, volume and power budget of a CubeSat platform.

hosted in 2 units of a 3U CubeSat, with one additional units dedicated to the FEE and DAQ of the demonstrator.

Weigth < 3 kg Power < 20 W

LGAD SiMS Tracker

40 layers of 150 μm thick SiMS LGADs
readout pitch: 150 μm
expected Δx ~ 15μm

Target timing resolution ~ 100 ps

Veto / Time of Flight system 0.5 cm thick Sci-paddles SiPM readout using commercial FEE Δt ~ 30 ps

Electromagnetic Calorimeter 3x3x3 cm³ array of LYSO crystals SiPM readout using commercial FEE Feasibility to add another stack of LYSO array under study

Perspectives to fly a cubesat demonstrator to reach TRL=9 in a follow-up activity

Cubesat payload: mission objectives

GOAL 1. (Technological) Demonstrate the feasibility of constructing and operating thin LGAD Si-µstrip sensors in harsh space environment – TRL 9 GOAL 2. (Scientific) Show that LGAD performances are adequate for next generation astroparticle experiments in space

Measurement of converting photons with E > 20 MeV in the LGAD Si-µstrip tracker with reconstruction of the e⁺/e⁻ pair angle in the tracker

with improved vertex reconstruction by identification of backsplash hits

Observation of photons with E > 20 MeV from the Crab Nebula

Verification of detector PSF and confirmation of conversion technique Observation of photons from Crab in the 20 MeV – 50 MeV range Comparison with previous experiments (e.g., CGRO/EGRET) above 50 MeV

Study of charged CRs using the 5D tracking (position, energy deposit and timing) enabled by the LGAD SiMS tracker

<u>Data-driven</u> characterization of Tof capabilities for LGAD SiMS detectors <u>Data-driven</u> characterization of e/p separation capabilities for LGAD SiMS detectors Monitor the time variation of charged CRs and SEP events

Concurrent Engineering Facility study @ Si

Through a **cooperative** and **parallel study activity** of the domain experts, ASI-CEF is able to define the feasibility of a space mission and its preliminary technical requirements

Phase 0 or pre-Phase-A mission concept studies, including, e.g.:

- new mission concept assessment
- new technology validation at system/mission level
- space system trade-offs and evaluation of opportunities
- payload instrument conceptual design
- mission/system scientific requirements definition and consolidation
- mass / power / data budget

Concurrent Engineering Facility study @ Si

Through a cooperative and parallel study activity of the domain experts, ASI-CEF is able to define the feasibility of a space mission and its preliminary technical requirements

<u>https://www.asi.it/tecnologia-ingegneria-micro-e-nanosatelliti/lingegneria/concurrent-engineering-facility/</u> including an open call for opportunity (3 deadlines/year) to italian research centers to perform space mission studies @ ASI-CEF

PM2024, 2024/05/30

V. Vagelli (ASI-DSR) - Si-microstrip LGAD detectors for cosmic-ray space-borne instruments

The PSF of γ -ray experiments (Fermi-LAT, DAMPE, ...) is degraded at low energies by Coulomb MS in materials (passive converter and Si-sensors)

- Remove passive materials
- Use thin active detectors
- Increase number of active layers to boost the GR conversion probability (approach first proposed in X. Wu et al., "PANGU: A high resolution gamma-ray space telescope", Proc. SPIE 9144 (2014)

Sub-GeV γ-ray detectors Opportunity for improved PSF below 1 GeV

PANGU ref.: 1 deg PSF @ 100 MeV (1/5 Fermi-LAT) 0.2 deg PSF @ 1 GeV (1/5 Fermi-LAT)

Tracking with Low Gain Avalanche Diodes

Gains from material budget reduction in low-energy CR and g-ray measurements

Thin high signal Si sensors: the LGAD intrinsic gain improves the SNR for thin sensors and allows for reduced active material budget tracking planes

Novel approach fully active multi-layer tracker

Si-microstrip LGAD detectors for cosmic-ray space-borne instruments

- **5D tracking in space** may open new diagnostics and approaches in cosmic-ray and gamma-ray next-generation instruments
 - LGADs are the candidate technology to achieve <100 ps resolution in large area space trackers
 - R&D and spin-in / spin-off from ground accelerator detectors is needed to increase the TRL

The PTSD program aims in verifying the proof-of concept and test a breadboard instrument to validate TRL=5 for a timing Si-

LGAD system for space applications

- Activities just started with focus on design optimization through simulations results are encouraging
 - details on readout board design and production in progress.
 - µstrip-LGAD sensor production to be planned

Wide interest in the community to operate LGAD-based detectors in space

(what follows is just a subset of italian programs to the best of my knowledge)

PM2024 - 16th Pisa Meeting on Advanced Detectors LGAD sensors in future CR space observatories Contribution ID: 343 Type: Poste Spoke 4 -Next Generation Detectors of Ionizing Radiation and P.S.. Marrocchesi, Astrop. Phys. 152 (2023) 102879 O.Adriani et al., Instruments 2022, 6(2), 19 **Fields for Remote Sensing** Analog Front-End for the Readout of LGAD Based **Particle Detectors** Poster by Simone GIROLETTI Collaboration Thu afternoon / Fri morning ADA-5D **ALADInO** MOONRAY Large area (3x3mm²) pixels with timing magnetic spectrometer Si-Tracker Charge Detector ToF and high dyn. range for Z=40

V. Vagelli (ASI-DSR) - Si-microstrip LGAD detectors for cosmic-ray space-borne instruments

Next-generation space magnetic spectrometers

(based on High Temperature Superconducting Magnets)

Following up on PAMELA, AMS-02, DAMPE and CALET: calorimeters and spectrometers

_

Enlarge acceptance and maximum detectable energy to extend statistical limits and explore highest energies

O.Adriani et al., Instruments 2022, 6(2), 19

Large acceptance HTSM spectrometer planned for operations in L2

- Extend at least 10x AMS-02 acceptance
- PeV nuclei CRs + TeV e⁺ and p-bar + GeV D-bar and He-bar

Mission concept EU-driven

V. Vagelli (ASI-DSR) - Si-microstrip LGAD detectors for cosmic-ray space-borne instruments

AMS-100 Time of flight

T. Kirn, VCI 2022

AMS-100: Time of Flight System

Anti-Deuterons are the most sensitive probe for New Physics in Cosmic Rays

AMS-100 would observe thousands of Anti-Deuterons in Cosmic Rays

• Required ToF-Single Counter time resolution : 20 ps

• Z measurements from the signal height

RWTHAACHEN UNIVERSITY

I.PI

• Provides the trigger and measures $\beta = v/c$