Design of a 8 Channel 40 GS/sec 20 mW/Channel Waveform Sampling ASIC in 65 nm CMOS

Jinseo Park²,

D. Braga¹, F. Fahim¹, N. J. Pastika¹, P. M. Rubinov¹, T. N. Zimmerman¹, T. England¹, H. J. Frisch², M. Heintz², E. Oberla², C. Poe², Y. R. Yeung², C. Ertley³, N. Sullivan⁴, E. Angelico⁵, Hector Rico-Aniles⁶

1. Fermi National Accelerator Laboratory 2. University of Chicago 3. Southwest Research Institute 4. Angstrom Research Inc. 5. Stanford University 6. North Central College

Motivation: Detectors with ps level resolution

... WE ALSO NEED SUB-PS RESOLUTION FE ELECTRONICS!

Primary goal

- Achieve <**1ps resolution** in measuring the arrival time of LAPPD pulses.
- But we also aim for a versatile chip, so that it is applicable to other fast-timing applications
- Sample and Hold at very fast frequency, and then digitize the held voltage values using commercial ADC chips.

]						
PSEC5	From Detector			Trigger gene		m		Trig. Ch. Mask	Digital Slow Control		
		x8 Impedance Matched Termination				Trigger	logic		Length-r x1 Pre-trigger	matched	Ext. trigger
Process	65nm TSMC				Fast Trigger		Timestan 10b	np register			– — Timestamp read
Signal to Noise	1000	Signal		Fast Bank	Fast Bank Fast	Bank Fast Bank			1	IO GHZ VCO	
Sampling Rate	40GSa/s(5GSa/s)	5G Clock	5 GHz	10 GHz SCA 16 samples							40 MHz ref clock
Buffer Length	6.4ns(204.8ns)	40MHz Clock	Voltage Followers								
Analog Bandwidth	5GHz	Digital				x256	Se l			5 GHz	
Channels/Chip	8	Analog	2 GHz		Readout switch	controller	w Trigger				
Area	2mm ²		Voltage Followers		5 GHz SCA x 102 Slow Bank	24 samples					
Max. Readout Rate	40KHz				Out buf	put fer x1					
Institution	UChicago & Fermilab				То	x8 external fast ADC ch	ips				

2024-05-27

PSEC5 / PM2024

Schedule

Schematic / Simulation	Sep. 2023
Layout	Mar. 2024
Post Layout Simulation	Apr. 2024
Layout Optimization	Jul. 2024
Tapeout without package (Pre-production)	Sep. 2024
Testbench (Chip on Board)	Dec. 2024
Production	2025

Core Layout (Without Digital & Clock generation Block)

550 um

Comparison with Oscilloscope

	PSEC5	Oscilloscope
Power/Channel	Low(20mW/Ch)	High
Output	Analog	Digital
Real Time	No(40k events/s)	Yes
Cost/Channel	Low	High

Point 1. Fast & Slow Banks

2024-05-27

PSEC5 / PM2024

Fast Bank Usage Example

- 4 Fast Banks
 - 64×4 samples
 - 1.6ns *x4* of sampling window
 - High power consumption
 - Run sequentially
- Slow Bank
 - 1024 samples
 - 204.8ns of sampling window
 - Low power consumption
 - Fast banks are triggered within the sampling window

Fast sampling - interleaved

Layout of a single column (16 cells)

Size: $45\mu m \times 25\mu m$ Capacitor: 35fF

Sampling Switch 2.5V NMOS Size: $4\mu m \times 280nm$

Switching Drift

- The value of a capacitor **drifts while it switches off** from the signal line.
- Drift consists of **switch gate charge injection**, which is a fixed value and is calibratable, and **resistive drift**, which is dependent on signal V.
- It is essential to keep the

[Sample → Hold] transition time low.

→NMOS instead of CMOS for the sampling switch!

Voltage Level Shifter

										'thick' c	oxide d	levîce he	ere to pr	event gat	te oxide	breakd	own!			
							5 📂	(•	• •		• •	- • · · · · · · · · · · · · · · · · · ·	٦· · ٽ·						
												· · ·	′· <mark>∳</mark> , · ·							
										₹			i Žili i							
									I I - ML	<mark>.</mark>										
										• · ·			· • · ·							
										• • •			· 📕							
										<u>i</u> lhi			<'							
												-								
										• • •			· 🖕 · 🔹 🕴							
										1										
· vid d	 	 				 	 													
, vau 🔪							· ·													
							ico													
							crit													
				· 📕 M25 ·			. φ													
				ie ·	vdd25		a , a													
			· · 📮 d	—			 es		· 📕 🖵		gnd		· - · · .							
				· · ·			vic ·		· · ·	× ·				effectiv	vé lóaď	càpácit	anice' ~	5fF '		
					 ОЪ		de ·			• • •			. 📫							
			· ·Ø	•	Q <i>U</i>		Se						CV**2	2/2 / 200	$\delta[bs] =$	16[fJ]/2	ØØ[ps]	= Ø.Ø	8mW ·	
							the .			MI4			°. 🖕							
							· · ,	·Q ·	· ·					<u>Qb</u>						
			· ·				÷	. 🗖 .	· ·	>			· 🖌 🛛 · 🗖 ·	· · fa	llitimei	= 15-2	Øps [T	córné	er, 2,4u]	
			<mark>.</mark>				 Гел			• • •			. 🖕	· · fa	ll'time'	= 15-2	2ps [T	l còrni	er, 1.6u]	
				· 🛉 · ·																
							ں . ص													
							õ	<u>)</u>												
							· · · Ao													
and	 	 				 	 · · ·													
- giia 🔪	 	 				 	 													

Point 2. Sampling Time Uncertainty

Resolution Dependence on SNR, sampling at 40GHz

- At <1ps timing resolution region, it is a **dominant component** of the overall uncertainty.
- Previous Chip PSEC4 employed Delay Locked Loop (DLL) to control sampling switches.
- Process Variation is a major source of systematic timing uncertainty.

PSEC4 ASIC(2014)

E. Oberla, H. Frisch, K. Nishimura, G. Varner, arxiv.org/abs/1309.4397

- 1. Measure many events of a sine wave.
- 2. Sum vs. Difference of two adjacent samples, over all events, form an ellipse.
- 3. Time offset can be determined from the coefficients.

Sample Time Distribution of PSEC4

Timing uncertainty reduced by an optimized LC-oscillator based PLL

From abstract:

"Both independent PLLs have identical loop dynamics to allow a fair comparison ...

Furthermore these circuits consume the same amount of power. The PLLs were processed in a commercial 65 nm CMOS technology."

J. Prinzie, J. Christiansen, P. Moreira, M. Steyaert and P. Leroux, "Comparison of a 65 nm CMOS Ring- and LC-Oscillator Based PLL in Terms of TID and SEU Sensitivity," in *IEEE Transactions on Nuclear Science*, vol. 64, no. 1, pp. 245-252, Jan. 2017.

5GHz Dual Edge Triggered D Flip-Flop

• Still, we expect to use similar calibration technique as PSEC4

PSEC5 / PM2024

Summary

- PSEC5 is a reliable, reusable, and cost-efficient **waveform sampling** ASIC.
 - Lower power consumption and dead time
 - Avails various methods of external calibration
 - High channel count per chip
- The fast-slow architecture of the chip makes it relatively versatile
 - Long time window (204.8 ns) per event
 - While also achieving high timing resolution on regions of interest (6.4 ns)
- It can easily be incorporated as a front end of any detector system which requires <1ps timing re solution.

THANK YOU FOR YOUR ATTENTION!