## **4D-Tracking with Digital SiPM-ICs**

### **Exploring the Potential of CMOS SPAD Arrays**

Inge Diehl, Finn Feindt, Ingrid-Maria Gregor, Karsten Hansen, Stephan Lachnit, Daniil Rastorguev, Simon Spannagel, Tomas Vanat, **Gianpiero Vignola** 

PM2024, 28 May 2024

HELMHOLTZ





### **Silicon Photomultipliers**

#### **State of the Art Solid State Photodetectors**



### **SiPM-IC Using Commercial CMOS Processes**

**Exploring SPADs in Foundries Process Design Kits** 





DESY dSiPM in LFoundry 150 nm

### Digital SiPM integrated circuit (dSiPM)

#### Advantages

- large and fast signals
- Customized readout architectures
- Masking of noisy pixels
- Hitmap readout possible
- Simpler DAQ system
- Large volume production
- Low-cost implementation
- New possible applications

#### Drawbacks

- Processes not (yet) specialized
- Higher noise compared to SiPMs
- Reduced fill factor (electronics)

### **CMOS SPADs Applications**

#### **Commercial and HEP Examples**



#### LIDAR & 4D-imaging

- Automotive
- Industry
- Security

Images from: Fraunhofer IMS



#### Scintillating fibers readout

• Calorimetry, tracking





#### 4D-Tracking of charged particles?

• MIPs tracking and timing

https://dx.doi.org/10.1088/1361-6633/aa94d3

### dSiPM as Possible 4D-Tracker Candidate

#### **Beyond Photon Detection Applications**

#### MIP detection with analog devices

- SPAD/SiPMs already proved to be good MIPs detectors [1] [2]
- Excellent instrinsic timing performance O(10 ps)
- Photon detection is still possible (multipurpose detector)

#### Using CMOS dSiPM

- On-chip data processing and digitalization
- Tracking-like detector architecture possible
- High granularity with O(10 µm) spatial resolution
- Large area/volume production possible

#### Drawbacks

- Efficiency is limited by the fill factor
- High DCR compared to standard pixel detectors
- No distinction between signal and noise



MIP interaction in a SPAD

### **DESY dSiPM Prototype**

### ASIC in LF 150 nm CMOS

#### Layout

- In LFoundry 150 nm CMOS technology
- Main matrix: 32 x 32 pixels (4 SPADs per pixel)
- Sensor area: 2.2 x 2.4 mm<sup>2</sup> ٠
- Test structures in the chip periphery

#### **Features**

- Full hit matrix readout and timing measurements
- 4 x 12-bit Time to Digital Converters with ~95 ps bins ٠
- Pixel masking & 2-bit in-pixel hit counting
- Quenching can be tuned (quenching transistor)
- In chip trigger logic
- Readout is frame-based (3 MHz frame rate)
- Versatile Caribou DAQ system is used for biasing & readout

#### For details: I. Diehl et al 2024 JINST 19 P01020

DESY. |4D-Tracking with Digital SiPM-IC PM2024 | Gianpiero Vignola 28-May-2024



ASIC design of the DESY dSiPM







DESY dSiPM pixel picture (69.6 x 76 µm<sup>2</sup>)



Caribou DAQ system Fast & low cost implementation of solid state detector prototypes http://dx.doi.org/10.22323/1.370.0100 https://gitlab.cern.ch/Caribou/

### **DESY dSiPM Test Beam**

#### **Device Treated as a Particle Detector**





DESY dSiPM test beam setup



- **EUDAQ** framework and AIDA TLU used for data acquisition and synchronization of devices.
- Corryvreckan Framework used for test beam data reconstruction and analysis

### **DESY dSiPM Spatial Properties**

### **Direct MIP Detection (Only Silicon)**



### **DESY dSiPM Timing**

### **Direct MIP Detection (Only Silicon)**



160

140

120

100

### **DESY dSiPM Efficiency**

### **Direct MIP Detection (Only Silicon)**





0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

10 20 30 in-pixel x<sub>track</sub> [μm]





#### **DESY dSiPM + thin LYSO**

- Overcome efficiency limit
- Reduce noise contamination (large signals for MIP events)
- Preserve good spatial resolution
- Concept already explored using analog SiPM [1] [2] [3]
- Three sample assembled with 100, 200 & 500 µm thick LYSO



Thin LYSO glued on DESY dSiPM



### **DESY dSiPM + Thin LYSO**

**Cluster Size, Signal & Noise with Different Tagging** 





MIP detection with thin radiator coupling



Small temperature (DCR) dependence

### **DESY dSiPM + Thin LYSO**

### **Spatial Residuals, Good Spatial Performances Preserved**







- Thinner LYSO has better spatial resolution
- Sigma ~32 μm (100μm LYSO) and ~38 μm (200μm LYSO)
- Small OV & temperature dependence

### **DESY dSiPM + Thin LYSO**

### **Efficiency & Timing Performances**



- From ~33% (bare silicon) to >99% using Thin LYSO coupling
- No OV or temperature dependence



MIP detection with thin radiator coupling



Faster radiators may improve timing

### **Summary & Outlook**

dSiPM as 4D-Tracking Candidate

### **CMOS dSiPMs**

- Combination of SPAD and CMOS electronics in the same silicon die opens new application possibilities
- Reduction of complexity & cost especially for large volumes

### DESY dSiPM & MIPs 4D-Tracking

- dSiPM can be a possible candidate technology for 4D-tracking
- Spatial resolution down to ~20 µm and ~50 ps system timing
- Efficiency >99%, very low noise rate using thin LYSOs

### **CMOS dSiPMs R&D Potential**

- dSiPM can play an important role in future HEP detector systems
- CMOS dSiPMs are a "young" technology, promising R&Ds ongoing
- Any new idea of possible HEP application is welcome

### DESY dSiPM 4D-Tracking Performances

|                                | dSiPM   | dSiPM+LYSO |
|--------------------------------|---------|------------|
| Signal<br>Cluster Size         | ~ 1     | 10 – 40    |
| Spatial<br>Resolution          | ~ 20 µm | ~ 35 µm    |
| Efficiency in<br>MIP detection | ~ 33 %  | > 99 %     |
| Noise Rate                     | O(MHz)  | O(Hz)*     |
| Time<br>Resolution             | ~ 50 ps | < 1ns **   |

\* While cutting on cluster-size

\*\* Currently under investigation

# Thank you.

#### **References:**

I. Diehl et al, Monolithic MHz-frame rate digital SiPM-IC with sub-100 ps precision and 70 µm pixel pitch S.Lachnit, Time Resolution of a Fully-Integrated Digital Silicon Photo-Multiplier F.Feindt et al, The DESY digital silicon photomultiplier: Device characteristics and first test-beam results

#### Gianpiero Vignola gianpiero.vignola@desy.de

Deutsches Elektronen-Synchrotron DESY Notkestraße 85, 22607 Hamburg 1C, O1.331, ATLAS



The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

### **DESY dSiPM ASIC**

### **More Details in Reference Publication**



Figure 3. Simplified equivalent circuits of: (a) the dSiPM pixel, (b) the TDC, and (c) the validation logic.

From: <u>I. Diehl et al 2024 JINST 19 P01020</u>

### **IV Curves & Dark Count Rate**

### **Basic Chip Characterization**

- Detailed characterization performed on several samples (Chip4 shown in figures)
- IV & Dark Count Rate studies performed with controlled temperature (from -25 to 20 °C) and humidity (~ 0 %) in a dark environment
- Measurements compatible with expectations





### **DESY dSiPM Characterisations**

### **Exploring the Potential of Digital SPADs**

#### Studies possible thanks to digital features

- Effect of quenching transistor tuning in senor response
- Pixel masking: effect on IV and DCR reduction
- Pixel crosstalk characterisation: studying the correlation between avalanche position and CT probability in neighbours



Crosstalk studies as function of avalanche position



DESY. |4D-Tracking with Digital SiPM-IC PM2024 | Gianpiero Vignola 28-May-2024

### **DAQ System in Test Beam**

#### AIDA TLU Core





#### hitmap





§0

### Plastic scintillator with a hole used as VETO for Trigger

- · Anticoincidence with other scintillators
- Trigger only in a ROI slightly larger than DUT
- · Allows to save disk space and maximize yeld



### Material budget image for DUT alignment

Corryvreckan modules: [TrackingMultiplets] [AnalysisMaterialBudget]

Material Budget Image (AAD)



AAD(kink) [mrad

3.5

2.5

1.5

0.5





### **TestBeam data reconstruction**

**Using Corryvreckan Framework** 

- Corryvreckan use hit <sup>(c)</sup> (pixels above threshold) and Clusters <sup>(c)</sup> (groups of adjacent hits) to reconstruct particle trajectories.
- DUT response is then investigated on associated events





SiPM-IC tesbeam setup



- Real Track
- Hit
- Cluster
- Cluster center
- Reconstructed
  Track
- Residuals

http://cern.ch/corryvreckan



### dSiPM + LYSO Sr-90 Data

Random Selection (100, 200, 500 from the top)

Overvoltage ~1.5 Temperature on Chip ~25C

