
Multi-Messenger and Multi-Wavelength Astronomy

Advancements in Multi-Wavelength Data Analysis:

The ThreeML Framework for High-Energy Astronomy

The Multi Mission Maximum Likelihood framework (ThreeML) is a Python-based software package designed for multi-wavelength
data analysis in high-energy astronomy. Integrating X-ray and gamma-ray data from various instruments, along with measurements
at lower wavelengths, is essential for unlocking the full potential of observational data. However, the lack of standardization and
unique challenges posed by each instrument often complicate the process of combining data from multiple sources. ThreeML
addresses these challenges with its flexible, plugin-based structure, allowing for the seamless inclusion of data from diverse
observatories in their native formats. Leveraging astromodels, a versatile modeling framework, ThreeML enables separate handling
of source modeling and data access from likelihood optimization, facilitating a flexible combination of both aspects. Moreover, in
addition to frequentist maximum likelihood analysis, ThreeML supports Bayesian analysis through posterior distribution sampling.

Modeling with astromodels

•A model contains one or more sources.

•Sources have a spatial shape (point source/extended), one or more spectral
components, with optional polarization.

•Energy-dependent morphology also supported.

•Phenomenological models: Powerlaw, log-parabola, …

•Physical models: Blackbody, photometric absorption, DM spectra, Synchrotron
spectrum via naima, EBL absorption via ebltable, APEC models via pyatomdb

•Access to all xspec models (if xspec/xspecmodelsonly installed).

•Flexible: Users can define their own functions at run time, or:

•Read in tabulated spectra/fits maps.

•Combine (add, multiply etc) existing functions (e.g. absorption terms).

•Parameters may be linked via arbitrary functions.

The IceCube
collaboration and
others: Science 361,
eaat1378 (2018)

•Standard (not optimal) approach: Unfold data, fit to high-level data (e.g. differential
flux measurements, SED)

•Unfolding makes (implicit) assumptions on spectrum, source size/shape etc. (not
always consistent).

•Weak sources: deal with upper limits, non-gaussian uncertainties etc.

•Combining information from instruments with different angular/energy
resolution can be challenging.

•Better approach: Forward-fold model, fit to low-level data (e.g. photon counts)

•Model assumptions are made explicit.

•Plug-ins used to deal with different formats for data/instrument response.

ℒ = ∏
instruments

∏
energy bins

∏
pixels

Poisson (Nobs |Nmodel (θ) + NBG)

Measured photon counts

Model parameters: Source

location(s), shape(s), flux, …

Vary model parameters to

minimize likelihood.

TS = 2 ln (ℒ̂
ℒ0)

Measure of detection

significance

Likelihood of

best-fit model

Likelihood of model

without source

Predicted source counts: source model

convolved with detector response

(PSF, cut efficiency, energy resolution)

Estimate of remaining instrumental/

cosmic-ray background counts

Minimizers and Samplers

•Plugins are able to:

•Read in data/instrument response files in “native” format.

•Convolve model with detector response, calculate model predictions.

•Calculate the likelihood.

•Produce (pseudo-) random simulated datasets given a model to assess the goodness of fit.

•Optional convenience functions for visualization etc.

•Plugins can be wrappers for external software (e.g. fermipy) or standalone (e.g. HAL).

•Joint likelihood fits between multiple plugins (same or different type)

The Plugins

Minuit
iminuit

Pagmo

Scipy

Multinest

Grid
minimizer

Emcee

Dynesty

Ultranest

Zeus

bayes = BayesianAnalysis(model, datalist)
bayes.set_sampler("emcee")
bayes.sampler.setup(n_iterations=100)
results = bayes.sample()

mle_analysis = JointLikelihood(model, datalist)
local_minimizer = LocalMinimization("minuit")
local_minimizer.setup(ftol=1e-4)
results = mle_analysis.fit()

IXPE

IXPELike

COSI

COSIpy

Documentation:

https://threeml.readthedocs.io/en/stable/

https://astromodels.readthedocs.io/en/latest/

pip install astromodels threeml

conda install astromodels threeml -c threeml conda-forge

Nicola Omodei, Niccoló Di Lalla (Stanford University) and the ThreeML team

https://threeml.readthedocs.io/en/stable/
https://astromodels.readthedocs.io/en/latest/

