

WEIZMANN INSTITUTE OF SCIENCE

Study of bulk damage of high gamma-irradiated n⁺-in-p silicon diodes

universität freiburg

M. Mikeštíková^{a,*}, I. Zatočilová^{a,b}, P. Federičová^a, P. Gallus^c, R. Jirásek^a, J. Kozáková^a, J. Kroll^a, J. Kvasnička^a,

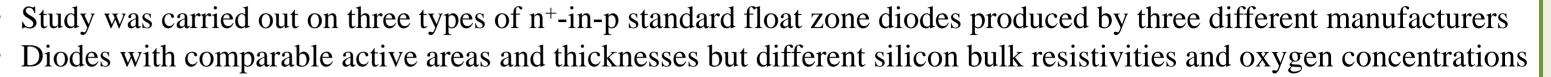
V. Latoňová^a, I. Mandič^d, K. Mašek^e, P. Novotný^{a,f}, R. Přívara^{a,g}, P. Tůma^a

^a Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18200 Prague 8, Czech Republic ^b now at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany ^c UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague – Zbraslav, Czech Republic

^d Experimental Particle Physics Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

Introduction

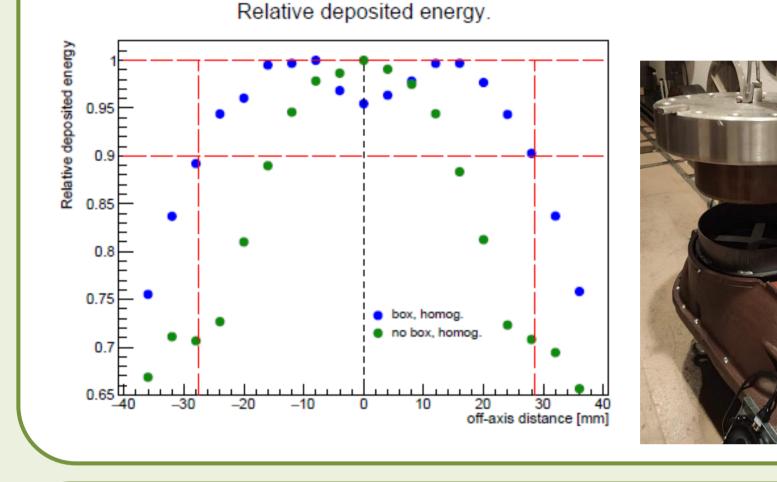
- Presented study was performed to quantitatively evaluate bulk damage in Si n⁺-in-p high resistivity sensors when exposed to γ - radiation reaching total ionizing doses (TID) up to 8.3 MGy.
- Main goal of study:
 - \triangleright Characterization of γ -radiation induced displacement damage by measuring IV and CV, as well as evolution of full depletion voltage $(V_{\rm FD})$ with TID,
 - > Determination of relation between 1 MeV n_{eq}/cm^2 and TID delivered by γ -radiation,
 - \blacktriangleright Extraction of electric field distribution and verification of $V_{\rm FD}$ by Transient Current Technique [1].

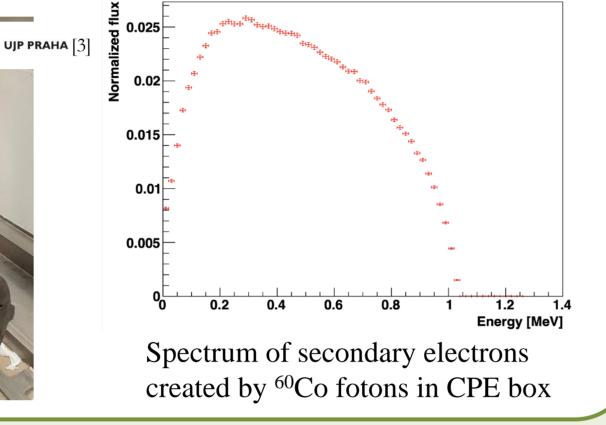

Irradiation

• Displacement damage during 60 Co γ -irradiation

^e Faculty of Mathematics and Physics, Charles University, V Holešovičkách 747/2, Prague 8, Czech Republic ^f now at Faculty of Physics, Weizmann Institute of Science 234 Herzl Street, Rehovot 7610001 Israel ^g Palacký University Olomouc, Faculty of Science, Joint Laboratory of Optics of Palacký University and Institute of Physics of the Czech Academy of Sciences, 17. listopadu 1192/12, Olomouc, 779 00, Czech Republic

Samples

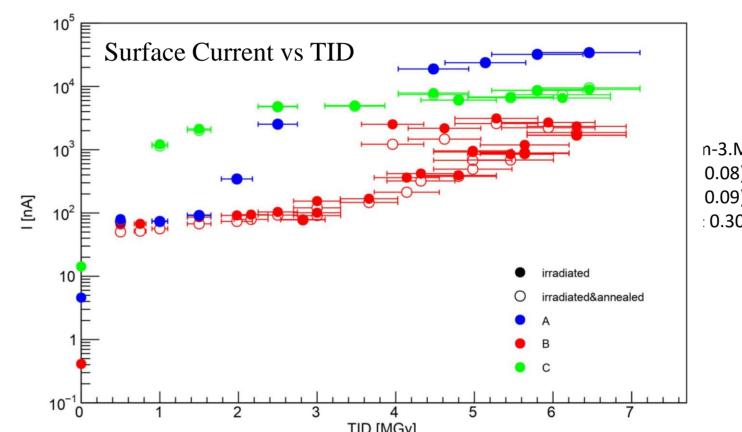

odes with comparable active areas and thicknesses but different shicon bulk				
	А	В	С	
Active Thickness d [µm]	285	290	285	
Active area A [mm ²]	49.95	51.55	50.17	
Active Volume V [cm ³]	0.0142	0.0149	0.0143	
Bulk Capacitance C _{bulk} [pF]	18.79	19.48	19.88	
Full Depletion Voltage V _{FD} [V]	283.6 ± 12.0	273.4 ± 10.7	36.9 ± 8.3	
Bulk Resistivity ρ [kΩ.cm]	3.1 ± 0.1	3.3 ± 0.1	24.0 ± 4.0	
Wafer Oxygen Concentration	$1.5 \times 10^{16} - 6.5 \times 10^{17}$		NA	



- Diodes irradiated by 60 Co γ -source in CPE box according to ESA/SCC Basic Spec. No. 22900 [2]
- CPE box minimizes dose enhancement from scattered low-energy particles and ensures uniform distribution of deposited energy
- Dose rate 160-190 Gy/min in silicon (5% uncertainity)

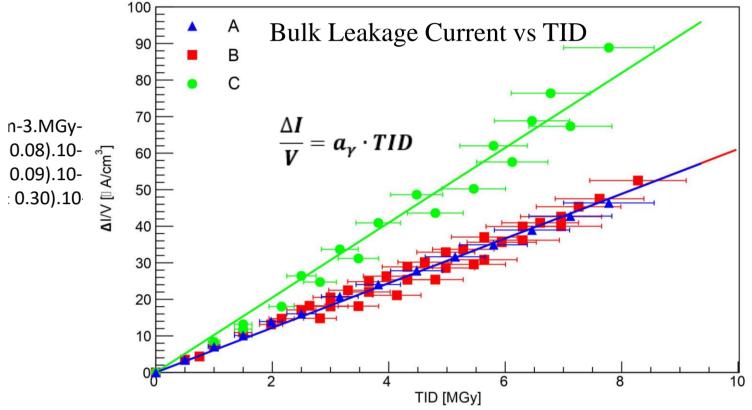
is primarily caused by Compton electrons having a maximum energy of 1.2 MeV • Cluster production not possible – min. electron energy needed for clusters $\sim 8 \text{ MeV} \rightarrow \text{damage}$

- exclusively due to point defects
- Max. recoil energy for primary knock-on Siatom by Compton electron $\approx 140 \text{ eV}$
- Min. electron energy needed for single displacements for V-I (Frenkel pair) 260 keV



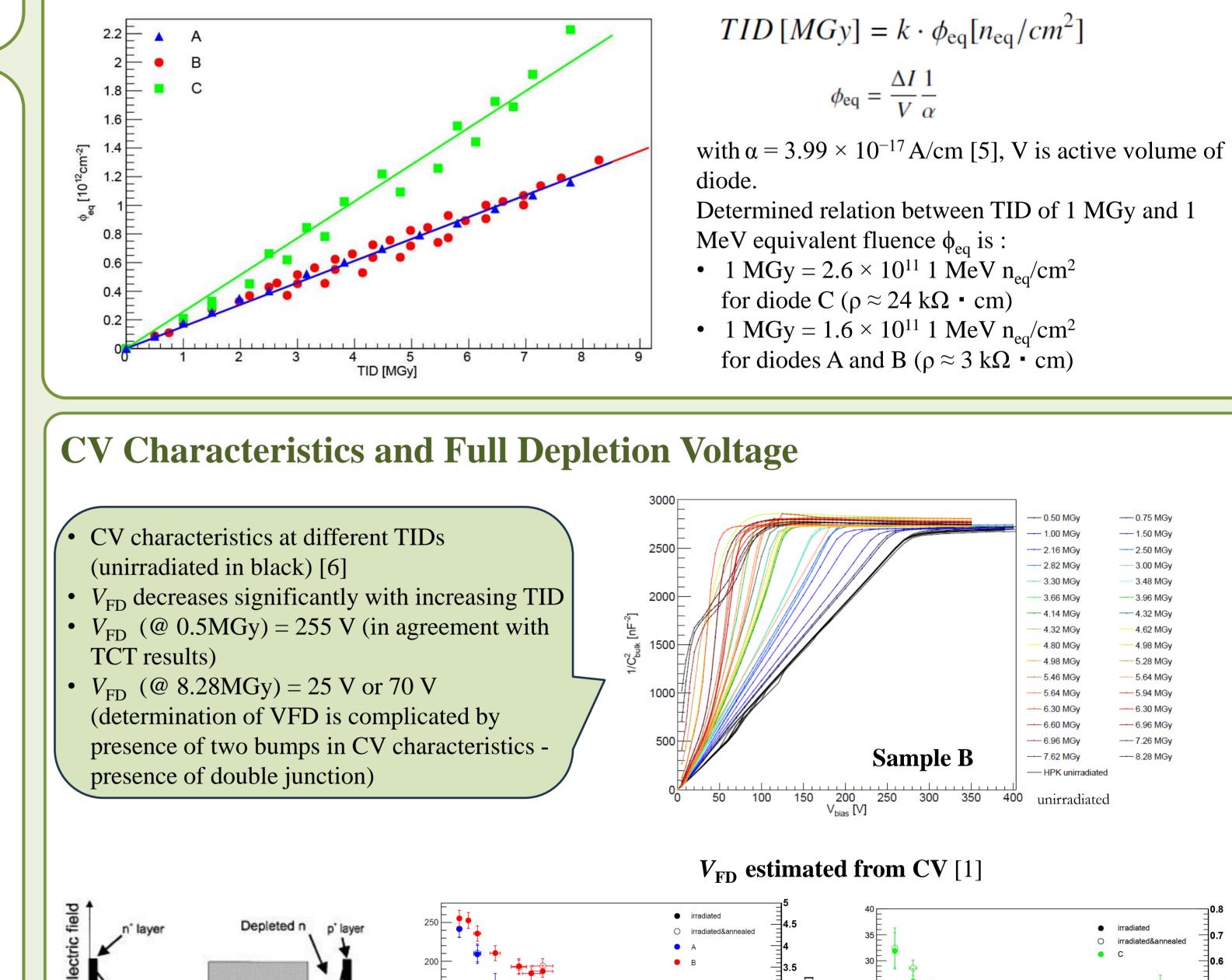
SIMS

- Secondary Ion Mass Spectrometry technique was used to determine relative concentration of oxygen in individual samples to a maximum depth of 14 μ m. Cs ions with energy of 7 keV were employed as primary source. **Results:**
- Concentration of oxygen decreases with increasing depth of diode.
- Decrease in oxygen concentration is least pronounced in sample C and most significant in sample A. •
- At depth of $14 \mu m$, sample C has the highest oxygen concentration, while sample A has the lowest.

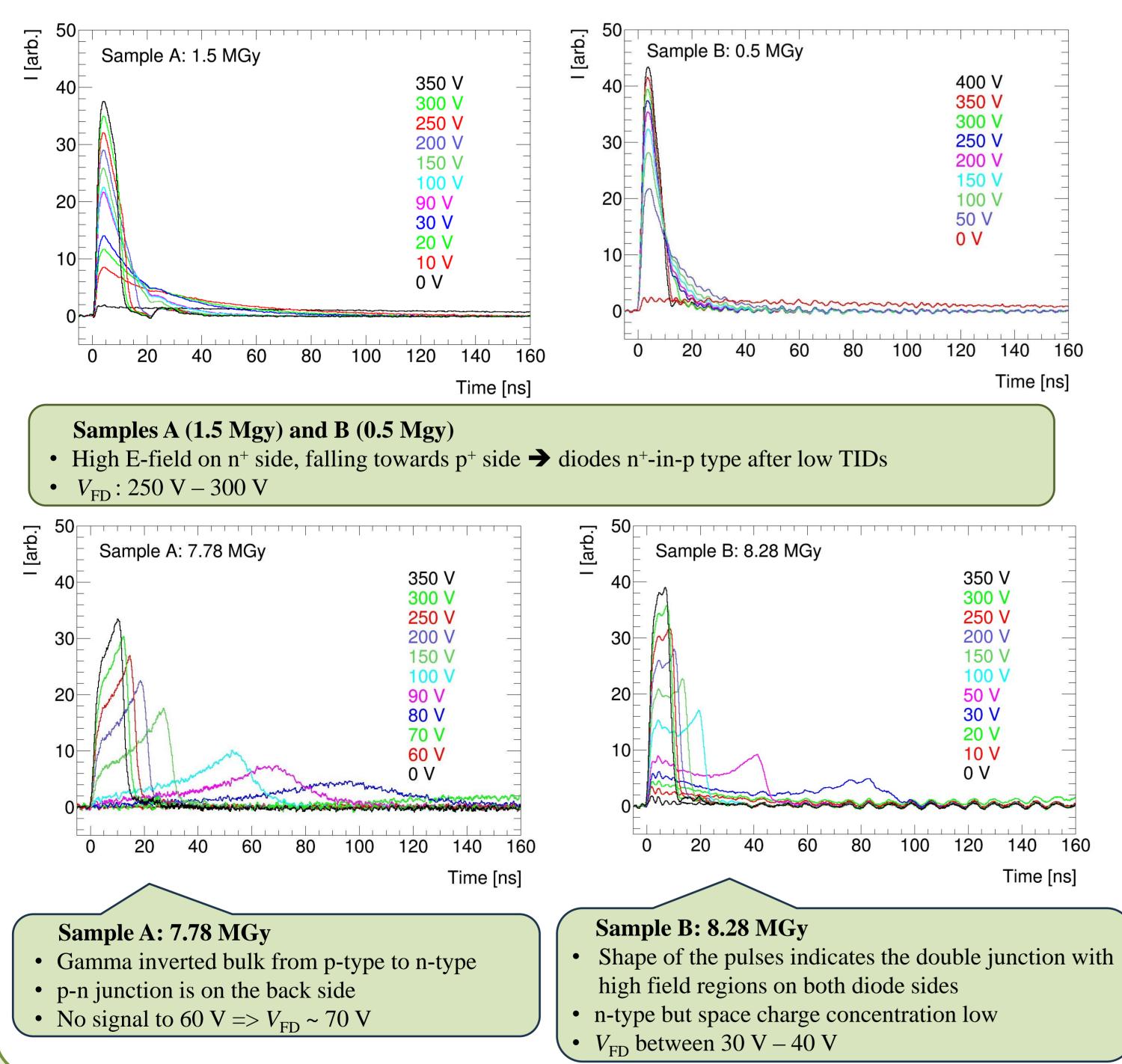

Leakage Current after Gamma Irradiation

Great care taken to properly determine leakage current contributing only to active volume of diode (I_{bulk}) by subtracting parasitic currents contributed by diode surface (I_{sur}) : $\boldsymbol{I}_{tot} = \boldsymbol{I}_{bulk} + \boldsymbol{I}_{sur}$

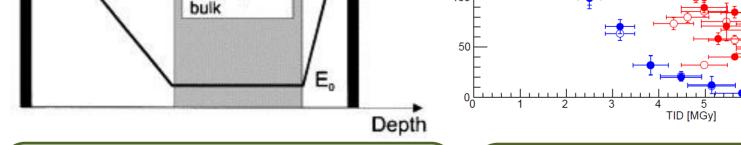
Surface current of all diodes increases rapidly already for initial TID, after which it rises only gradually [4]

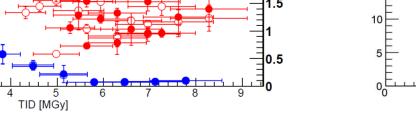

Sample	$\alpha_{\gamma} [A \cdot cm^{-3} MGy^{-1}]$	ρ [k Ω ·cm]
А	$(6.33 \pm 0.08) \cdot 10^{-6}$	3.1 ± 0.1
В	$(6.49 \pm 0.09) \cdot 10^{-6}$	3.3 ± 0.1
С	$(10.20 \pm 0.30) \cdot 10^{-6}$	24.0 ± 4.0

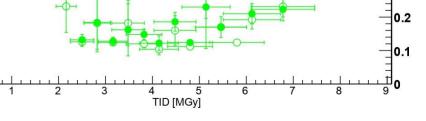
- Bulk current at $V_{\rm FD}$ normalized to active volume of diode increases linearly with increasing TID
- Diodes with similar ρ and V_{FD} show equivalent radiation damage


Relation between 1 MeV n_{eq}/cm² and TID Delivered by Gamma Irradiation

Assuming linear increase of the radiation-induced leakage current with TID is caused by a displacement damage, conversion factor k between TID [MGy] and delivered fluence ϕ_{eq} [n_{eq}/cm^2] can be estimated as:


TCT


• Transient Current Technique (TCT) [1] was used to verify $V_{\rm FD}$ values obtained from CV, and to extract electric field distribution and the sign of space charge N_{eff} of silicon diodes irradiated to the lowest and the highest TID • Diodes were illuminated from n+ side by red laser (660 nm)



- Bulk current of gamma irradiated high resistivity p-type silicon diodes increases linearly with TID, and damage coefficient depends on initial resistivity and/or oxygen concentration of silicon diode.
- Effective doping concentration, and therefore also $V_{\rm FD}$, significantly decreases with increasing TID, before it starts to increase again at a specific TID. Observed behavior indicates silicon bulk type inversion.
- Diode with higher initial resistivity, i.e. with lower or compensated boron doping, reaches minimum value of $V_{\rm FD}$ at lower TID.
- We assume that initial decrease of effective doping concentration is caused by effect of acceptor removal.
- TCT measurements confirmed type inversion in both measured diodes irradiated to high TIDs.
- IV and CV measurements of gamma irradiated diodes did not reveal any annealing effect.

- 0.50 MG

- 2.16 MC

- 2.82 MG – 3.30 MG

 3.66 MGv - 4.14 MG

- 4.32 MGv

4.80 MG

- 4 98 MG

- 5.46 MG

- 5 64 MG

- 6.96 MGv

- 7.62 MGv

HPK unirradiated

Qualitative electric field distribution in an irradiated silicon with double junction [7].

Non depleted

Depleted p

Effective doping concentration significantly decreases with increasing TID, before it starts increasing at a specific TID value.

References

[1] G. Kramberger et al., NIM A476 (2002) 645 [2] European Space Agency, ESCC Basic Specification No. 22900 (2003) [3] UJP PRAHA a.s., <u>https://ujp.cz/en/</u> [4] M. Mikestikova et al., NIMA, In Press doi.org/10.1016/j.nima.2024.169432

[5] Moll M., IEEE Trans. Nucl. Sci. Vol. 65, N. 8 (2018) 1561-1582 [6] I. Zatocilova et al., JINST 19 (2024) 02, C02039 [7] Z. Li, H.W. Kraner, IEEE Trans. Nucl. Sci. Vol. 39 (1992) 577

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic coming from the projects LM2023040 CERN-CZ, LTT17018 Inter-Excellence, and FORTE - CZ.02.01.01/00/22008/0004 632. Part of this work was also funded by the DPG within the frame work of GRK 2044/2.

16TH PISA MEETING ON ADVANCED DETECTORS, La Biodola, Isola d'Elba, May 26-June 1, 2024