ETHzürich

Low Energy Particle Physics - Fundamental Interactions Group of Prof. Dr. Anna Sótér

The PIONEER Experiment

Testing Lepton Flavour Universality in a Next-Generation Precision Pion Decay Experiment Located at PSI

Kolja Frahm* on behalf of the PIONEER Collaboration [1]

*kfrahm@phys.ethz.ch, ETH Zurich, 8093 Zürich, Switzerland

0 Motivation

Hints of Lepton Flavour Universality Violation

• Deviating branching ratios (R(D^(*)) with 3σ and R(K^(*)) with 4σ)

Measure branching ratio of π^+ (Phase I) $R_{e/\mu} = \Gamma(\pi^+ \rightarrow e^+ v(\gamma)) / \Gamma(\pi^+ \rightarrow \mu^+ v(\gamma))$

Cabibbo Angle

Study pion beta decay (Phase II/III) $\pi^+ \rightarrow \pi^0 e^+ v(\gamma)$

2 Momentum bite analysis of beam

Time of flight analysis

- Cut out pions in time-Energy-space
- calculate Δt and use it to get a rough estimate of Δp/p

With degraders

- pion energy signal changes with different degraders
- use peak position to identify momentum bite

scintillator

- Bridge gap between theoretical and experimental precision: improve precision by 15
- perhaps most precisely calculated weak interaction observable involving quarks
- New physics up to the PeV scale may be revealed
- Improve branching ratio by
 - a factor of three (Phase II)
 - order of magnitude (Phase III)
- theoretically cleanest extraction of |V_{ud}| at 0.02% level
- comparable to deduction from superallowed beta decays
- lift 3σ tension of V_{ud}

1 Experimental Setup

3 Calorimeter

- 25 radiation length 3π sr sphere surrounding the ATAR
- Energy resolution $\leq 2\%$
- LXe and LYSO crystals in consideration

LYSO Test Setup (2023 Beamtime): Measuring the Energy resolution of LYSO crystals

- 1. Calibration of single crystals
- 2.Apply cuts on events
- 3.Add contribution of all crystals together
- 4. Fit peak and calculate energy resolution

LXe Test Setup

- Optical Simulations with optical photons from Geant4
- Using simplified "Prototype" geometry, PMTs placed on one end

Pion Beam

Requirements:

Phase	p (MeV/c)	∆p/p (%)	∆Z (mm)	$\Delta X \times \Delta Y$ (mm ²)	ΔΧ',ΔΥ'	R _π (10 ⁶ /s)
I	55-70	2	1	10x10	±10°	0.3
,	≈ 85	≤ 5	3	15x15	±10°	20

Planned to use the πE5 beamline at PSI High Intensity Proton Accelerator

Tracker

Highly segmented active target (**ATAR**)

- defines pion stopping region
- high resolution timing information

$\pi^* \text{ DAR} \rightarrow e^*$	$\pi^{*} \: DAR \to \mu^{*} \: DAR \to e^{*}$	$\pi^{\scriptscriptstyle +} \text{DIF} \to \mu^{\scriptscriptstyle +} \text{DAR} \to \text{e}^{\scriptscriptstyle +}$	$\pi^* \text{ DAR} \rightarrow \mu^* \text{ DIF} \rightarrow e^*$
30 MIP MIP ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧	30 MIP	10 MIP 9 MIP 25 MIP 2.2 µs	30 MIP

• test different surface materials

References

[1] PIONEER Collaboration · W. Altmannshofer et al. PIONEER: Studies of Rare Pion Decays arXiv:2203.01981 (2022)
[2] Douglas Bryman et al. Testing Lepton Flavor Universality with Pion, Kaon, Tau, and Beta Decays arXiv:2111.05338 (2021)
[3] PIONEER Collaboration · S. M. Mazza. An LGAD-based full active target for the PIONEER experiment arXiv:2111.05375 (2022)
[4] Muon g-2 Collaboration · D. P. Aguillard, et al. Measurement of the positive muon anomalous magnetic moment to 0.20 ppm PhysRevLett:131.161802 (2023)

DPHYS

