

PNRR MUR project PE0000023-NQSTI

INTRODUCTION

The electric dipole moment of the electron (eEDM) is a possible source of CP violation.

A nonzero eEDM would imply an aspherical charge distribution along the electron's spin axis-> violation of T-symmetry and, through CPT conservation, of CP.

STANDARD MODEL PREDICTION

$$d_e^{SM} \le 10^{-38} e\ cm$$

Several extensions of the Standard Model allow a much larger eEDM that is within reach of near-term experiments.

CURRENT EXPERIMENTAL LIMIT

 $d_{e} < 4.1 \times 10^{-30} e \ cm$ @ 90% confidence level [T. S. Roussy et al., Science **381**,46-50 (2023)] (obtained with trapped HfF+)

Measuring the electric dipole moment of the electron using polar molecules in a parahydrogen matrix

Giuseppe Messineo - INFN Padova giuseppe.messineo@pd.infn.it on behalf of the PHYDES Collaboration

CSN gruppo V

DETECTION STRATEGY

Measure electron spin precession in a magnetic field and detect any change in precession rate due to the presence of an electric field.

 $\phi = (g \ \mu_B \pm d_e E) \ t_p / \hbar$ t_{P} = precession measurement time \leq spin coherence time **PRECESSION ANGLE**

- Use diatomic polar molecules (BaF, YbF, ThO) that have a single valance electron exposed to a huge effective molecular electric field ($E_{eff} \sim 10$ GV/cm)
- Perform the measurement for two opposite orientations of the electric field:

$$\delta d_e = \frac{\hbar}{2 E_{eff} \sqrt{N} t_P}$$
SHOT NOISE LIMIT
Assuming:
$$N \approx 10^{15} \text{ number of molecules (electrons) interrogated}$$

$$\delta d_e = \sim 10^{-32} e \ cm$$

KEY INGREDIENTS:

- High number of molecules (challenging, BaF is very reactive!)
- long spin coherence time

PHYDES EXPERIMENT:

Embed ¹³⁸Ba¹⁹F molecules in a cryogenic parahydrogen crystal (n $\approx 10^{13}$ BaF molecules / cm³) using the matrix isolation technique.

Parahydrogen (pH₂): anti-parallel nuclear spins, lower-energy state.

Stable hexagonal closed packed (hcp) structure. Lattice parameter ≈ 3.78 Å

MATRIX ISOLATION TECHNIQUE

Guest molecules are embedded within a matrix of pH₂ gas solidified at cryogenic temperature

- Allows the confinement of many molecules within the measurement volume
- Minimal interactions between guest and host molecules -> long coherence time (Rb atoms embedded in $pH_2 \approx$ hundreds of ms [J. Weinstein et al., PRL 125, 043601(2020)])

PARAHYDROGEN PRODUCTION

Hydrogen gas flows through a copper line filled with a hydrous ferric oxide catalyst that facilitates the conversion into the pH₂ state. The gas line is wound around the cold head of a cryocooler operating at 20 K.

PHYDES Collaboration

Sub-systems: Para-hydrogen production Condensation: growth BaF production and of doped crystal isotopic selection

MOLECULAR SOURCE

- BaF produced in a glow discharge chamber from BaF₂ powder
- Molecules are accelerated to 1 keV •
- Isotopic selection with a Wien velocity filter ($E \times B$)
- deceleration to \approx 5 eV to merge with pH₂ gas flow on the growth substrate

WIEN FILTER

• Optical Pump : Titanium Sapphire laser

Observe fluorescence emission in

wavelength interval 950-1100 nm

RF coils for state preparation and

tuned to the transition $X^2\Sigma^+ \rightarrow A^2\Pi^{1/2}$

DECELERATOR

Current status:

- extracted a BaF+ beam @ 1 KeV with few μA
- after decelerator 20nA @ 5eV, 10 cm from output

Charge neutralization of BaF+ is done in pH2 \rightarrow inject free electrons in the matrix We developed a system to photo-extract electrons from a gold layer deposited on the growth substrate using UV laser pulses.

OPTICAL DETECTION WITH FLUORESCENCE SPECTROSCOPY

Measure the population of a prepared coherent superposition state and detect any change in population (precession angle) when E is reversed. Laser induced fluorescence spectroscopy

ACKNOWLEDGEMENTS

OTHER DETECTION METHODS UNDER STUDY

- Magnetization: d_{ρ} and spin align with E field \rightarrow net electronic spin polarization generates a bulk magnetization detectable with a SQUID
- EPR detection: measure precession frequency shift when E is applied

Ongoing R&D to evaluate sensitivity and pros/cons of the different detection schemes.

This project is funded by the PNRR-MUR project PE0000023-NQSTI financed by the European Union – Next Generation EU and by the "Commissione Scientifica Nazionale gruppo V" of INFN. This work is also supported, in part, by the "Departments of Excellence grant 2023- 2027 - Quantum Frontiers" and by the "Progetti di Ricerca di Rilevante Interesse Nazionale" (PRIN grant 20227F5W4N) of the Italian Ministry of University and Reasearch.

"16th Pisa Meeting on Advanced Detectors"

La Biodola, Isola d'Elba, May 26 - June 1, 2024

 $\lambda = 859.8 \text{ nm}$

manipulation