A LIQUID HYDROGEN TARGET FOR THE CALIBRATION OF THE MEG-II LXE CALORIMETER

A. Papa^{abd}, A. M. Baldini^a, **H. Benmansour**^{ab}, S. Ban[°], L. Bianco^b, M. Brini^b, F. Cei^{ab}, M. Chiappini^{ab}, A. Matsushita[°], G. Dal Maso^{de}, M. Francesconi^g, L. Galli^a, L. Gerritzen[°], E. Grandoni^{ab}, M. Grassi^a, M. Hildebrandt^d, T. Iwamoto[°], S. Kobayashi[°], F. Leonetti^b, A. Oya[°], D. Nicolò^{ab}, G. Signorelli^a, A. Venturini^{ab}, B. Vitali^{af}, K. Yamamoto[°]

ONTACT: HICHAM.BENMANSOUR@PI.INFN.IT

THE MEG-II EXPERIMENT

- the MEG-II experiment [1,2] searches for the so far unobserved charged lepton flavour violating decay $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity close to $6 \ge 10^{-14}$ on its branching ratio
- it makes use of a 1000 L liquid xenon C-shaped tank equipped with PMTs and SiPMs to collect the Vacuum UltraViolet scintillation light from the 52.8 MeV signal gamma
- a Charge EXchange (CEX) reaction is performed yearly to extract the detector performances with photons at 55 MeV, close to the signal gamma's energy

THE CEX REACTION $\pi^- p \to \pi^0 n, \pi^0$

- Negative pions beam onto a LH₂ target
- **BGO** detector 54.9 < E_{γ} < 82.9 MeV
 - 55 MeV gammas selected through back-to-back γγ topology request making use

THE LH2 TARGET AND ITS PERFORMANCES

<u>How to bring a cell with LH2 < 20K at the center of 2m-long cylindrical design</u>?

- A closed-volume hydrogen circuit: a buffer of GH2 liquefies to target cell at COBRA center 2 meters away
- A flux of LHe goes through a **Cu coil** and cools down a **Cu cold finger holding the cell** through optimized thermal contact
- Vacuum insulation and super-insulating foils
- A pressure and temperature slow-control system

Performances

- LHe consumption: 250 liters / 24 hours
- Despite finite LHe dewars: **80% live time for CEX**

of a 4x4 BGO crystals array

• BGO is moved along the longitudinal and azimuthal directions to match the 24 patches of the xenon volume

THE LH2 TARGET CIRCUIT

THE XENON DETECTOR PERFORMANCES

Data collected with the LXe calorimeter through the CEX reaction allow an estimate of its performances:

• the **time resolution** is extracted by measuring the time difference between the two photons in the xenon and a pre-shower (front of BGO)

$$\sigma_{t_{\gamma,\text{LXe}}} = 65 \pm 6 \,\text{ps}$$
 at $E_{\gamma} = 55 \,\text{MeV}$

• the energy resolution through a fit of the energy spectrum in a central region of the detector

Time difference between the reconstructed photon timing in LXe detector and that on the pre-shower counter at E = 55 MeV

Energy response to 55 MeV photons hitting the LXe detector based on depth **w**

682.6 ± 9.

54.95 ± 0.03

 1.11 ± 0.02

28.38/18

 1278 ± 13.2

55.16 ± 0.02

1.02 ± 0.01 -0.6439 ± 0.0511

Ey [MeV]

-0.5853 ± 0.087

REFERENCES

[1] A. M. Baldini et al. "The design of the MEG II experiment". EPJC, 78(5) (2018)
[2] K. Afanaciev et al. "Operation and performance of the MEG II detector". EPJC 84(2) (2024)