

Characterisation Studies of Two Front-end Electronics Chips Designed for SiPM Readout

Yong Liu^{*a,b*}, Baohua Qi^{*a,b*}, Xin Xia^{*a,b*}, Zhiyu Zhao^{*c,d*}, Hongbo Zhu^{*e*} ^aInstitute of High Energy Physics, Chinese Academy of Sciences, ^bUniversity of Chinese Academy od Sciences, ^cTsung-Dao Lee Institute, ^dShanghai Jiao Tong University, ^eZhejiang University

16th Pisa meeting on advanced detectors La Biodola, Isola d'Elba May 26 – June 1

Introduction

Future Higgs Factory: Circular Electron Positron Collider (CEPC)

Boson Mass Resolution (BMR) 3%~4%: stringent requirements on calorimeters

High-granularity calorimeters: 5D calorimetry for precise jet measurements

- Crystal ECAL: critical requirements on dynamic range: up to ~10⁵ level photons
- Particle Flow Algorithm: good time performance for PID, energy reconstruction, etc.

SiPM readout electronics candidate with large dynamic range: MPT2321-B

- 32-channel readout, 12-bit ADC and 20-bit TDC per channel
- Large dynamic range: nominal design value 1.8 nC

A picosecond timing ASIC developed for SiPM readout: **PIST ASIC**

Promising ToT and ToA performance, 15 mW/channel low power consumption

Characterisation of MPT2321-B

MPT-chip response linearity with charge injection

- Excellent linearity with high gain modes
- Low gain mode 4 has the largest dynamic range but also observed non-linearity effects, linear range up to 1.8 nC (with 1 nC capacitor)

Beam-test: first test of MPT-chip with high energy particles

Dynamic range validation with crystal + SiPM units

- Electron response: MPV ~33,000 detected photons (at lowest gain)
 - Very close to the non-linear region (~3000 ADC channel)
- Toy Monte Carlo for SiPM saturation modelling
 - Geant4 optical simulation: ~82,000 photons (w/o saturation effects)
 - SiPM response: 88,000 input photons for 33,000 detected photons
 - MC generally consistent with the Geant4 simulation
- For SiPMs used with 7×10^5 gain: 33,000 photons \rightarrow 3.7 nC charge •
 - Note: The actual ADC is not simply equal to the input charge
 - Output depends on signal waveform, shaping time, hold-delay, etc.

Waveform description:

- Dynamic range: -780 mV to 780 mV
- Fast leading edge with low noise level, especially the bottom of the leading edge

Functions: use constant fraction discriminator (CFD) for timing

- Time of Arrival (ToA): timing measurement
- Time-over-Threshold (ToT): energy measurement

Experimental Results:

- **Timing performance**
 - 10% CFD turns out to be optimal for the timing performance
 - Within the dynamic range of 100 p.e. to 25k p.e., $\sigma < 50$ ps, varies from 7 ps (plateau) to 30 ps (1 MIP = 200 p.e.)
 - Decomposition analysis of time resolution contributions:
 - $\sigma_{SiPM+PIST} = \sigma_{SiPM} \bigoplus \sigma_{PIST} = (5.1 \bigoplus 4.8) \text{ ps}$
- ToT performance:
 - Can cover the SiPM response spanning from 560 p.e. to 25,000 p.e.

Conclusions

- Successfully conducted the laboratory and beam experiments of new SiPM readout chips
 - MPT-chip: good S/N and moderately large dynamic range
 - Capable for single photon calibration, detecting ~33,000 photons with 25 µm pixel SiPM
 - Could be improved by utilizing SiPMs with lower gains, reducing shaping time, etc.
 - PIST-chip: low power consumption with 10 ps level time resolution
 - Good time resolution: 30 ps at MIP level and can achieve 7 ps with larger SiPM signal
 - ToT response: ranging from 560 p.e. to 25,000 p.e.

Acknowledgement

The authors would like to thank the support from the beam-test facilities at DESY, the CALICE collaboration and the CEPC calorimeter working group for their extensive efforts.