

MuCol

Detector design for a 20 TeV Juint Muon Collider

ccelera

>10TeV CoM

P. Andreetto¹, D. Calzolari², M.Casarsa³, L. Castelli⁴, E. Di Meco^{5,6}, A. Gianelle¹, C.Giraldin⁴, A. Lechner², D.Lucchesi^{1,4}, L. Sestini¹, L. Palombini⁴, D. Zuliani^{1,4}

E. Di Meco^{5,6} on behalf of the International Muon Collider Collaboration

¹INFN-Padova, ²CERN, ³INFN-Trieste,⁴Università degli studi di Padova,⁵Università degli Studi Roma Tor Vergata, ⁶INFN-LNF

PM2024, 16th Pisa Meeting on Advanced Detectors, May 26 - June 1, 2024

The Muon Collider project

- In a muon collider facility intense beams of μ + and μ could collide at multi TeV center of mass energy
- Advantages: possibility to perform high precision measurement and to reach the energy frontier for discovery
- Challenges: muons are unstable particles → decays generate a diffuse background → Beam-Induced Background (BIB)
- BIB particles [1] enter the detector region making the events reconstruction challenging.
- Two Tungsten cone-shaped shields (Nozzles) are inserted in the forward region of the detector to mitigate the BIB effects [2]

Physics cases

- A 10 TeV Muon Collider can target many different physics cases [3]
 - High precision physics measurements, for example Higgs physics
 - Search for **new physics at the energy frontier**, for example search for new particles like Z'
 - Search for unconventional signatures like (Disappearing tracks, long-lived particles, WIPMS)

HCAL

- A sampling calorimeter provides excellent reconstruction of jets, and offers good energy resolution.
 - Base design: 60 layers of steel and plastic scintillating tiles (3x3 cm²) [4]
 - The **solenoid** is placed between ECAL and HCAL. The magnetic field can be closed with HCAL iron.

Tracking system

- Several requirements [4]:
 - Good timing performance
 - Radiation hardness
 - Good granularity
- Several possible candidates:
 - LGADs ($\sigma_t \sim 30$ ps)
 - Monolithic Sensors

ECAL

- To reduce the BIB contribution[5]:
 - Fine granularity
 - Good Timing (<100ps)
 - Longitudinal segmentation
 - Excellent energy resolution
 - Radiation hardness
- New technology proposal: **CRILIN** (Crystal calorimeter with longitudinal information)[6]
 - Semi-homogeneous calorimeter with 5 PbF₂ crystal (10x10x40cm²) layers read by SiPM

GND

- From experimental tests: $\sigma_t < 20 ps$ and good radiation hardness
- From simulation studies: energy resolution ~ 4.8%//E w/o BIB,
 15%//E w/ BIB

- New proposal: **MPGD**-based HCAL [7]
 - Higher granularity (1x1cm²)
 - Excellent rate capability (up to 10 MHz/cm²)
 - Good energy resolution

Muon system

- Muon reconstruction will benefit from good timing performance
- Proposal: **MPGD** (Picosec)
- Ongoing R&D to test scalability

2 4 6 8 10 12 14 16 18 20 22 24 Mean Charge (pC)

Conclusions

- The unique experimental environment of the Muon Collider imposes stringent requirements in detector design to mitigate the presence of BIB and achieve optimal measurement performance.
- The results obtained with the current preliminary configuration are very promising. Upcoming software developments and advancements in hardware technology will significantly improve the current performance.

References	For more
[1] <u>F. Collamati et al 2021 JINST 16 P11009</u>	information
[2] N. Bartosik (INFN, Turin) et al. 2022, Simulated Detector Performance	
at the Muon Collider.	Tel 6(2)-32673// Tel
[3] J. De blas et al. 2022, The physics case of a 3 TeV Muon Collider	ACCESSION OF THE OWNER
<u>stage.</u>	2565528/03/5
[4] <u>C. Accettura et al,2023, Towards a Muon Collider</u>	
[5] L. Sestini et al. 2021, Design a calorimeter system for the Muon Collider	
experiment.	Collaboration
[6] <u>S. Ceravolo et al 2022 JINST 17 P09033</u>	2732676446464
[7] <u>C. Aguta et al,2023, Design and simulation of a MPGD-based hadronic</u> calorimeter for a Muon Collider	