MALTA — Rad Hard Monolithic Pixel Sensors in Tower 180 nm for Tracking and Timing

Steven Worm, DESY / Humboldt-Universität zu Berlin for the MALTA R&D Collaboration*

MALTA - MAPs for Collider Applications

- NIEL radiation hardness $3 \times 10^{15} n_{eq}/cm^2$
- TID radiation hardness >100 Mrad
- Pixel Pitch 36.4 x 36.4 μ m²
- 40 MHz bunch tagging
- Low voltage operation (6V to 55V)
- Sensor size ~20 x 20 mm²
- Target ENC noise ~ 10 e-
- Minimal Threshold ~ 100 e-

Optimised Readout Architecture

Asynchronous readout architecture → high hit rate capability
Data streaming for triggerless readout, track trigger formation

MALTA Sensor Performance & Parameters

- Matrix size 512 x 512 pixel (MALTA1) or 512 x 224 pixel (MALTA2)
- Radiation-hard MALTA sensor implemented in high volume industrial 180 nm CMOS imaging process (Tower Semiconductor)
- Small 3 μm collection electrode, 3.5 μm spacing to electronics \rightarrow small pixel input capacitance of 230 aF, low cross talk
- Optimisable sensor thickness—from 50 μm to 300 μm
- Low pixel analog power: <1 µW/pixel
- Full efficiency (>98%) 2 x 10¹⁵ n_{eq}/cm²
- Time-resolution <2 ns
- Threshold after irradiation ~120 e-
- Optimised implant design for high charge collection speed, fast
- ion signal response and radiation hardness

MALTA Sensor Variants

- Sensor-to-sensor high-speed signal transmission for modules
- Produced on Epitaxial and Czochralski high-resistivity substrates

MALTA pixel and substrate variants:

Sensors produced with several field-shaping options in high-resistivity Epi or Czochralski

Timing Studies

0.95

Timing Resolution σt ~ **1.7 ns**, from

- Electronics jitter, Time-walk
- Charge collection effects
- Scintillator jitter (~0.5 ns)
- FPGA readout jitter (~0.9 ns)
- Charge Collection Within Window
 Timing = leading hit wrt scintillator

MALTA2 Cz, XDPW,

- 90% of hits collected within 8 ns
- 98% of hits collected within 25 ns
- 95% within 25 ns @ $3 \times 10^{15} n_{eq}/cm^2$

Pixel and Sensor Test Layout

MALTA Test Setup:

Fast FPGA-based readout, custom firmware, PC board for sensors

MALTA Pixel:

Separate analog and digital sections (mirrored)

Radiation Hardness

Depletion Studies: Edge TCT

Excellent efficiency after $3 \times 10^{15} n_{eq}/cm^2$

- -30 V bias on VH-doped sensors
- Backside metallisation for eff. biasing
- Small noise occupancy

Very High Doping

- With ~70% higher doping on continuous n-layer
- > 95% efficiency up to $3 \times 10^{15} n_{eq}/cm^2$
- Good efficiency even in the pixel corners

Edge TCT Setup @ DESY+HU

- IR pulsed laser, 1064 nm wavelength
- 4 µm beam width at focus
- Sensor edge polish + PCB cut out
- Charge injection in special analog pixels
- Scan in 2 axes w/ ~0.2 µm precision

ETCT scan of MALTA2

Coming Soon: MALTA

- MALTA2 with 30 µm Epitaxial layer
- Red box = approximate pixel location
- Pitch FWHM @ -6V: 23.6 ± 0.2 μm
- Depth FWHM @ -6V: 30.2 ± 0.2 μm

Grazing Angle Studies: CERN SPS Testbeam

Depletion Studies: Summary

Inclined MALTA2 sensors @ SPS

- Studied inclined 1 x 10¹⁵ n eq/cm² irradiated sensor
- MALTA2 Czochralski sensor from -6 V to -30 V
- Demonstrated increased efficiency and cluster size
- Recover efficiency at low bias for irradiated samples

MALTA Telescope @ CERN SPS

- 6 tracking planes, <5 µm spatial resolution
- Scintillator for timing
- Cold box: up to 2 DUTs + rotational stage
- Flexible triggering, online monitoring

Grazing Angle + Edge TCT Comparison

- Active depth measured by two separate methods
- SPS threshold: pixel discriminator, Edge TCT threshold: oscilloscope trigger
- Almost no change in active depth vs. bias
- Grazing Angle vs. eTCT results match at low threshold

*P. Allport (Birmingham), I. Asensi Tortajada (CERN), P. Behera (IITM), D.V. Berlea (DESY), D. Bortoletto (Oxford), C. Buttar (Glasgow), F. Dachs (CERN), V. Dao (CERN), G. Dash (IITM), D. Dobrijevic (Zagreb, CERN), L. Fasselt (DESY), L. Flores Sanz de Acedo (CERN), M. Gazi (Oxford), L. Gonella (Birmingham), V. Gonzalez (Valencia), G. Gustavino (CERN), S. Haberl (CERN, Innsbruck), P. Jana (IITM), L. Li (Birmingham), H. Pernegger (CERN), P. Riedler (CERN), W. Snoeys (CERN), C.A Solans Sanchez (CERN), T. Suligoj (Zagreb), M. van Rijnbach (CERN), M. Vazquez Nunez (Valencia, CERN), A. Vijay (IITM), J. Weick (CERN), S. Worm (DESY), A.M. Zoubir (Darmstadt)

[1] https://ade-pixel-group.web.cern.ch/PublicPlots
[2] MALTA Telescope: EPJC 83 (2023) 7, 581
[3] MALTA2 Czochralski: EPJC 84 (2024) 251
[4] MALTA2 Depletion Depth: NIMA 1063 (2024)

