Measurements and TCAD simulations of guard-ring structures of thin silicon sensors before and after irradiation

<u>T. Croci^(1,*)</u>, A. Fondacci^(2,1), R. White⁽⁴⁾, M. Durando⁽⁵⁾, S. Galletto⁽⁵⁾, G. Borghi⁽⁶⁾, G. Paternoster⁽⁷⁾, M. Centis Vignali⁽⁷⁾, M. Boscardin⁽⁷⁾, R. Arcidiacono^(8,4), N. Cartiglia⁽⁴⁾, F. Moscatelli^(2,1), D. Passeri^(3,1), M. Ferrero⁽⁴⁾, V. Sola^(5,4) and A. Morozzi⁽¹⁾

- 4) Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy.
- 5) Dipartimento di Fisica, Università di Torino, Torino, Italy.
- 6) Dipartimento di Ingegneria, Politecnico di Milano, Milano, Italy.

8) Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy.

7) Fondazione Bruno Kessler (FBK), Trento, Italy.

(*) tommaso.croci@pg.infn.it

Motivations

- Developing high performing silicon detectors for particle tracking in the next generation of high-energy physics experiments at future colliders (e.g., HL-LHC, FCC) \checkmark able to operate efficiently up to very high fluences, $\Phi \sim 1 \times 10^{17}$ 1 MeV n_{ed}/cm².
- To sustain high voltage values with minimum leakage current injection into the core region of the sensor, the design and optimization of the Guard-Ring (GR) protection structure is crucial, especially when small substrate thicknesses are used.
- ✓ In a recent R&D batch produced at FBK in the framework of the "eXFlu" project, different optimisation studies of GR structures for thin substrates (45, 30, 20 and 15 µm) up to high fluences (2.5×10^{15} 1 MeV n_{ea}/cm²) have been addressed.
 - o ad-hoc advanced Technology CAD (TCAD) modelling of the different GR design strategies, accounting for the radiation-induced damage effects (bulk + surface);
 - extensive test campaign on these GR structures, both before and after irradiation.
 - \rightarrow Validation of the development framework and evaluation of the impact of the various GR design options on their performance, before and after irradiation.

	Measurements		Simulations						
•	"EXFLU1" R&D batch, FBK	Temperature-controlled probe station	Layout and mesh	Bias Ring	Floating GR	Scribeline	Doping profi	le	
4	Wafer	GR protection					Clin deep Bigs Bing		⊨

