

A novel wiring technique to build ultra-low mass high-wire density drift chambers

Marco Chiappini* on behalf of the MEG CDCH group *INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy

Physics context: the Mu-E-Gamma II experiment at PSI

Application: the Cylindrical Drift CHamber (CDCH)

INFN

Istituto Nazionale di Fisica Nucleare

Sezione di Pisa

 \succ Low-mass single volume detector with high granularity filled with He:iC₄H₁₀ 90:10 gas mixture

- + additives to improve the operational stability: 1.5% isopropyl alcohol + 0.5% Oxygen
- 9 concentric layers of 192 drift cells defined by \approx 12000 wires
- Small cells few mm wide: occupancy of ≈1.5 MHz/cell (center) near the stopping target
- High density of sensitive elements: ×4 hits more than MEG phase 1 Drift CHamber (DCH)
- > Total radiation length 1. 5 × 10⁻³ X_0 : less than 2 × 10⁻³ X_0 of MEG DCH or ≈150 µm of Silicon
 - MCS minimization and γ background reduction (bremsstrahlung and Annihilation-In-Flight)
- > Single-hit resolution (measured on prototypes): $\sigma_{hit} < 120 \ \mu m$
- \succ Extremely high wires density (12 wires/cm²) \rightarrow modular design and assembly

The MEG II wiring machine inside the INFN Pisa cleanroom

Hydraulic glue (3M DP-100) dispenser with automatic drop deposition

Final result: wires locked with soldering (electrical contact) and glue (mechanically ensured) drops

Glueing stage

Since the extreme difficulty to solder very thin AL wire and avoid micro-slipping

Reference

marker

for PCB

alignment

References

Final stack of wire PCBs and PEEK spacers in one sector

CMM measurements for geometry tuning

Wire PCB module on the mounting arm to be guided to the proper endplate sectors (±6-8° stereo geometry)

Modular detector assembly

- Performances of a new generation tracking detector: the MEG II cylindrical drift chamber, A. M. Baldini et al., Eur. Phys. J. C 84 (5) 473 (2024)
- Operation and performance of the MEG II detector, MEG II Collaboration, Eur. Phys. J. C 84 (2) 190 (2024)
- \blacktriangleright A search for $\mu^+ \rightarrow e^+\gamma$ with the first dataset of the MEG II experiment, K. Afanaciev et al., Eur. Phys. J. C 84, 216 (2024)
- The Cylindrical Drift Chamber of the MEG II experiment, M. Chiappini et al., NIMA, Volume 1047 (2023) 167740
- An automatic system for the wiring of Drift Chambers for modern high intensity and high precision particle physics experiments,
 G. Chiarello et al., JINST 15 (2020) C0703