SHADOWS Tracking system performance for the proposed SHADOWS experiment at CERN

Shreya Roy, on behalf of the SHADOWS Collaboration Physikalisches Institut, Heidelberg University

Feebly-interacting particles (FIPs) have become a focal point in high-energy physics due to their potential to solve major puzzles, like dark matter and neutrino oscillations [1]. The SHADOWS experiment aims to detect FIPs in the MeV-GeV mass range [2], profiting from the intensity upgrade of the P42 beamline at CERN North Area. Simulation results present the performance of the proposed SHADOWS tracker for FIPs decaying to leptonic states.

FIP performance of different proposed experiments

Sensitivity to HNL with muon coupling coupling dominance: U^2 : U^2_{μ} : $U^2_{\tau} = 0.1:0$

SHADOWS (Search for <u>H</u>idden <u>And</u> <u>D</u>ark <u>O</u>bjects <u>W</u>ith <u>S</u>PS)

Aim: Search for FIPs emerging from charm and beauty decays, in the range of MeV to a few GeV

Straw tubes for SHADOWS Straw tubes in NA62

SHADOWS : Experimental layout

Signal reconstruction and selection

SHADOWS Spectrometer + Tracking detector

"Stay close and stay off-axis" – maximizing acceptance for FIPs from heavy quark decays while minimizing background from the dump.

Muon background – Efficient background reduction using magnetised iron blocks [2] reduces from 2x10⁹ muons/spill to 0.0012 muons/spill. Further reduction by reconstruction of FIP decays [3].

FIP signal used for the simulation : ALP $\rightarrow \mu + \mu -$

Summary

- SHADOWS tracker (using straw tubes Ø 1cm) can achieve a few mm vertex resolution and 1% mass resolution
- The (ALP) signal efficiency is 83% in the acceptance of SHADOWS

References

[1] G. Lanfranchi, M. Pospelov, P. Schuster, The Search for Feebly Interacting Particles, arXiv:2011.02157 [hep-ph], Ann.Rev.Nucl.Part.Sci. 71 (2021) 279-313. SHADOWS SHADOWS collaboration, Technical Proposal, |2| https://cds.cern.ch/record/2878470/files/SPSC-P-367.pdf, CERN-SPSC-2023-029 / SPSC-P-367. [3] S. Roy on behalf of the SHADOWS collaboration, "The SHADOWS experiment at the CERN SPS", PoS (EPS-HEP2023) 465 2023 DOI: https://doi.org/10.22323/1.449.0465