Characterization results of MAPS digital prototypes for the ALICE ITS3

Anna Villani on behalf of the ALICE Collaboration, anna.villani@cern.ch 16th Pisa Meeting on Advanced Detectors, 26/05-01/06 2024, La Biodola

The ALICE Inner Tracking System for LHC Run 4

- A new Inner Tracking System **ITS3** [1] will replace the innermost layers of the ALICE ITS2 during LHC Long Shutdown 3 (2026-2028).
- Tracking efficiency and pointing resolution will be further improved by this upgrade, thus allowing to increase the precision of measurements in the heavy-flavour sector and to bring another set of fundamental observables into reach [2], e.g.:
 - B_s^0 and Λ_h^0 at low transverse momenta
 - Non-prompt D_s^+ and Ξ_c^+ decays in heavy-ion collisions

Detector layout:

- 3 truly cylindrical **self-supporting** layers
- Each half-layer made by 1 **flexible MAPS** sensor which:
 - has a large-area O(10×26 cm²)
 - is **ultra-thin** (\leq 50 µm)
- Ultra-light carbon foam support structures keep in position the sensors
- **Innermost layer at 19 mm** from the interaction point
- Unprecedentedly low material budget of 0.09% X₀/layer • Talk by L. Aglietta
- Air cooling system

1. ITS3 MAPS prototypes

- **5 μm** 2D spatial resolution

2. MLR1 and ER1 digital pixel architecture

- ۲
- Additional low dose n-type epitaxial layer over the full width:
 - charge collection

3. Energy loss measurements with DPTS

The DPTS is a 1.5×1.5 mm² MLR1 chip:

- 32×32 pixel matrix, 15 µm pitch
- Time-over-threshold (ToT) measurements

The linearity of the front-end from 1.7 to 28.5 keV was evaluated with fluorescence X-ray measurements. A Mn foil and a Sn foil were used as targets.

4. DPTS in-beam measurements

Measurements to assess [5]:

- Detection efficiency and spatial resolution
- Irradiated samples show excellent detection efficiency (99%)
- **DPTS power consumption** can be

lowered to 16 mW cm⁻²

	75	100	125	150	175	200	225	250	275	зóо	325	350
Threshold (e^-)												

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

¹⁰⁻¹⁰ نت

5. Large-area stitched sensor characterization

Extensive mass testing (120 chips from 20 wafers) to evaluate

- Performance
- Production yield

First steps:

- Measurements of power net impedances
- Power ramp of the 2.

	1-TOP	LIMIT	OK - I	OK - I	LIMIT	LIMIT	LIMIT	LIMIT	OK - I	OK - I	OK - I
•	1-BOT -	OK - II	OK - II	OK - II	OK - II	LIMIT	LIMIT	LIMIT	OK - II	OK - I	OK - II
•	2-TOP										
	2-BOT -										
-	3-TOP	OK - II	OK - II	OK - II	OK - II	LIMIT	LIMIT	LIMIT	OK - II	OK - I	OK - I
Ъ	3-BOT -	LIMIT	OK - I	OK - II	LIMIT	LIMIT	LIMIT	LIMIT	LIMIT	OK - II	LIMIT
af	4-TOP	OK - I	OK - I	OK - I	LIMIT	LIMIT	LIMIT	LIMIT	OK - I	OK - II	OK - I
Š	4-BOT -	OK - I	LIMIT	OK - I	LIMIT	LIMIT	LIMIT	LIMIT	OK - I	OK - II	LIMIT
-	5-TOP	OK - I	LIMIT	OK - I	LIMIT	OK - II	LIMIT	LIMIT	LIMIT	OK - II	OK - I
	5-BOT	OK - II	OK - I	OK - II	LIMIT	LIMIT	OK - II	LIMIT	OK - I	OK - I	LIMIT
	6-TOP -	OK - I	LIMIT	OK - II	OK - II	LIMIT	LIMIT	LIMIT	LIMIT	OK - I	OK - I
	6-BOT -	OK - II	OK - II	OK - I	OK - II	OK - II	LIMIT	LIMIT	OK - II	OK - II	OK - II
	1 700	OK II	OKI	OK II	LIMIT	OK II	OK II		LIMIT	OK II	OK II
	1-100-		OK-1								
	1-001		OK I	UK-1	UK-1	UK - II		OK - II			OK - II
m	2-TUP -				OK II	OK I					
N	2-001	OK - II	OK - I			LIMIT	LIMIT		OK - I	OK - II	LIMIT
<u> </u>	3-10F		OK - I	OK - I	OK - II	OK - II	LIMIT	OK - II	0K - 1	LIMIT	OK - II
fe	A TOP		LIMIT	LIMIT	LIMIT	OK - I	OK - II		OK - II	OK - I	OK - I
/a	4-10F	OK - II	OK - I	OK - II	OK - II	OK - I	OK - II	LIMIT	LIMIT	OK-1	OK - II
5	5.TOP	OK - 1	OK - II	OK - II	LIMIT	OK - I	OK - I	OK - I	OK - I	0K - 1	OK - I
	5-BOT	LIMIT	OK - II	LIMIT	OK - I	LIMIT	LIMIT	OK - II	OK - II	OK - I	OK - II
	6-TOP	OK - I	OK - I	OK - I	OK - II	LIMIT	OK - I	OK - II	OK - II	OK - II	OK - I
	6-BOT	OK - 1	OK - I	OK - I	OK - II	OK - II	LIMIT	OK - II	OK - I	LIMIT	OK - I
	0.001										
	1-TOP -	OK - I	OK - II	OK - I	OK - I	OK - I					
	1-BOT -	OK - I									
	2-TOP	OK - II	OK - I	OK - I	OK - II	OK - I	OK - I	OK - II	OK - I	OK - II	OK - I
4	2-BOT	LIMIT	OK - I	OK - II	OK - I						
	3-TOP -					to he	tested				
e,	3-BOT -						colea				
af	4-TOP -	OK - I	LIMIT	OK - I	OK - I	OK - I	OK - I	OK - II	OK - I	OK - I	OK - I
≥	4-BOT	OK - I	OK - I	OK - I	OK - II	OK - I	OK - I	OK - I	OK - I	LIMIT	OK - I
	5-TOP -	OK - I	OK - II	OK - I							
	5-BOT	OK - I									
	6-TOP -	OK - II	OK - I								
	6-BOT	OK - I									
		RSU1	RSU2	RSU3	RSU4	RSU5	RSU6	RSU7	RSU8	RSU9	RSU10

Conclusions and outlook

> ITS3 will be installed during LS3 to be ready for LHC Run 4 (2029-2032)

21.6

25.2

Energy

calibration

5000

6000

- First large-area stitched sensor produced
- > Demonstrated bent MAPS operability [6], not shown
- Sensor qualification is on track:
 - Validated 65 nm CMOS process with MLR1 prototypes
 - Stitching qualification is ongoing

References

[1] ALICE Collaboration, Letter of Intent for an ALICE ITS Upgrade in LS3, 10.17181/CERN-LHCC-2019-018 [2] Shreyasi Acharya et al., Upgrade of the ALICE Inner Tracking System during LS3: study of physics performance, http://cds.cern.ch/record/2868015

- [3] Tower Semiconductor home page, https://towersemi.com/
- [4] M. Šuljić, ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade,
- https://iopscience.iop.org/article/10.1088/1748-0221/11/11/C11025
- [5] G. Aglieri Rinella, et al., Digital pixel test structures implemented in a 65 nm CMOS process, https://doi.org/10.1016/j.nima.2023.168589
- [6] ALICE ITS3 project, First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors, <u>https://doi.org/10.1016/j.nima.2021.166280</u>