ATLAS ITk Pixel Outer Endcap CO, cooling system prototypes

Sonia Carrà on behalf of the ATLAS ITk group

ATLAS new inner tracker: ITk

High-luminosity LHC phase starting in 2029

 \rightarrow ATLAS detector will be upgraded with a new silicon inner tracker

Silicon detector cooling is critical to prevent reverse annealing,

thermal runaway and control the leakage current due to radiation damage

Coolant choice

Cooling system based on CO₂ evaporative properties

- near isothermal, small temperature gradient along the rings/staves
- high heat transfer coefficient
- mass savings inside the detector due to smaller diameter tubing than conventional refrigerants
- radiation hard and environmentally safe

Manufacturing and testing

Manufacturing of prototypes and detector cooling system in the Milan INFN Workshop Pipes for prototypes and detector cooling system in titanium

 \rightarrow detector cooling system will be fully welded

Current injection

Testing at the BabyDEMO cooling plant @CERN: facility is able to provide a CO₂ flow of 150 g/s with a temperature as low as -45 °C

Simulation of the detector thermal load

in the prototypes:

evaporator treated

as resistor

Cooling system design

Specification:

Half-shell prototype for Layer 4

Scope is to test the **functionality and stability of the cooling system** and measurement of key quantities such as temperature and pressure drop Thermal load in normal operation conditions ~3kW

Titanium additive manufacturing for the manifold by LAMA laboratory

One loop prototypes

Design

Results

- temperature variation within 5 °C in evaporator + return lines, corresponding to **pressure drop** of 2 bar
- Total pressure drop of 10 bar, with 8 bar in the capillaries to equalize the flow and trigger the evaporation

T and ΔP along one loop in normal operation conditions

 ΔP in the evaporators for decreasing CO₂ flow

Flat prototypes of **one** loop for Layer 2 and 3:

capillary, evaporator, and exhaust line

Scope was to finalized design choice for exhaust line pipe

Tested at BabyDEMO

plant

 ΔP in evaporator and exhaust within the specification both in Layer 2 and 3

Conclusions

- Systems were proved to be stable under all the conditions tested
- Use of additive manufacturing parts has been proved \rightarrow
- Total pressure drops were consistent with the \rightarrow requirements of the system specification

