

Development of a novel high granularity crystal ECAL for future lepton collider experiments

Fangyi Guo (guofangyi@ihep.ac.cn)

on behalf of the CEPC calorimeter group and CALICE collaboration Institute of High Energy Physics, Chinese Academy of Sciences

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Introduction

CEPC: Future lepton collider as a Higgs/EW factory

- Precise SM particle measurements & direct BSM search.
- Detector requirement: PFA-oriented.
 - Jet energy resolution < $30\% / \sqrt{E}$, Boson mass resolution < 4%.

> A homogeneous ECAL : orthogonal arranged crystal bars.

- Bar size $\sim 1 \times 1 \times 40$ cm³, while reconstruct 5D info (*x*, *y*, *z*, *E*, *T*).
- EM resolution $\sim 3\%/\sqrt{E}$
- Main challenges:

DESY beam test with 1~5 GeV electrons @ TB 22

- Energy response: influenced by beam momentum spread.
- Timing response:
 - MIP level: ~ 1.8 ns.
 - Shower level (with pre-shower): 0.2 ns.

- Hardware: large dynamic range, time measurement, mechanism design.
- Software: dedicated reconstruction algorithms.

Lab R&D activities

- Uniformity scan for 40 cm BGO crystal bar
 - An automated crystal scan platform.
 - Good uniformity along a single bar: ~2.5%

Dedicated PFA algorithms

- > Main challenge with traditional PFA
 - Severer energy overlap in crystal: larger R_M and X_0/λ_I .
 - Ambiguity in orthogonal arranged bar: $2D \rightarrow 3D$
 - ~ 5 particles in the hottest 40×40 cm² module in CEPC.
 - A series of pattern recognition algorithms are developed.

Beam tests

Prototype module development

- $2.12 \times 12 \times 12$ cm³ crystal modules with $2 \times 2 \times 12$ cm² BGO bars.
- Readout: $3 \times 3 \text{ mm}^2$ SiPMs with 10/15 µm pixel, two-side readout.

> MIP signal in CERN muon beam test (1st module only)

> Performance: studied in CEPC 4th detector

- Single photon efficiency: ~100% for >1 GeV photon.
- Separation power:
 - $\gamma \gamma$ separation: 22 mm @ 100% efficiency.
 - $\gamma \pi$ separation: 50-100 mm @ 100% efficiency
- Physics performance in ee \rightarrow ZH $\rightarrow \nu\nu + 2jets @ 240 GeV:$
- Reconstruction: truth track + crystal ECAL + plastic scint. HCAL
- $m_{jj} = 128.3 \pm 5.6$ GeV, mass resolution 4.36%.

- Beam test @ PS T9 for MIP signal and calibration.
- Got successful commissioning and clear MIP peak from 1st module.
- EM resolution: need better understanding on MC digitization.

> A novel crystal ECAL design for the future lepton collider

- Extreme EM resolution, timing info available, compatible with PFA.
- Critical issues are studied in system level: mechanics, electronics, integration, etc.
 - Next beam test at CERN PS-T9, June 2024.
 - Possible to provide beam Δp estimation for DESY TB-22.
- Preliminary physical performances with new PFA are promising.

Acknowledgements

The author would like to present great thanks to the support from CERN and DESY beamtest facilities, CALICE collaboration and CEPC software group, and the financial support from EURO-LAB.